↓ Skip to main content

Effects of exosomes from LPS-activated macrophages on adipocyte gene expression, differentiation, and insulin-dependent glucose uptake

Overview of attention for article published in Journal of Physiology and Biochemistry, March 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
57 Dimensions

Readers on

mendeley
66 Mendeley
Title
Effects of exosomes from LPS-activated macrophages on adipocyte gene expression, differentiation, and insulin-dependent glucose uptake
Published in
Journal of Physiology and Biochemistry, March 2018
DOI 10.1007/s13105-018-0622-4
Pubmed ID
Authors

Nicolás De Silva, Mirian Samblas, J. Alfredo Martínez, Fermín I. Milagro

Abstract

Obesity is usually associated with low-grade inflammation, which determines the appearance of comorbidities like atherosclerosis and insulin resistance. Infiltrated macrophages in adipose tissue are partly responsible of this inflammatory condition. Numerous studies point to the existence of close intercommunication between macrophages and adipocytes and pay particular attention to the proinflammatory cytokines released by both cell types. However, it has been recently described that in both, circulation and tissue level, there are extracellular vesicles (including microvesicles and exosomes) containing miRNAs, mRNAs, and proteins that can influence the inflammatory response. The objective of the present research is to investigate the effect of exosomes released by lipopolysaccharide (LPS)-activated macrophages on gene expression and cell metabolism of adipocytes, focusing on the differential exosomal miRNA pattern between LPS- and non-activated macrophages. The results show that the exosomes secreted by the macrophages do not influence the preadipocyte-to-adipocyte differentiation process, fat storage, and insulin-mediated glucose uptake in adipocytes. However, exosomes induce changes in adipocyte gene expression depending on their origin (LPS- or non-activated macrophages), including genes such as CXCL5, SOD, TNFAIP3, C3, and CD34. Some of the pathways or metabolic processes upregulated by exosomes from LPS-activated macrophages are related to inflammation (complement activation, regulation of reactive oxygen species, migration and activation of leukocyte, and monocyte chemotaxis), carbohydrate catabolism, and cell activation. miR-530, chr9_22532, and chr16_34840 are more abundant in exosomes from LPS-activated macrophages, whereas miR-127, miR-143, and miR-486 are more abundant in those secreted by non-activated macrophages.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 66 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 66 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 14 21%
Student > Master 11 17%
Researcher 6 9%
Student > Bachelor 4 6%
Student > Postgraduate 3 5%
Other 7 11%
Unknown 21 32%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 18 27%
Medicine and Dentistry 6 9%
Agricultural and Biological Sciences 6 9%
Pharmacology, Toxicology and Pharmaceutical Science 2 3%
Unspecified 2 3%
Other 7 11%
Unknown 25 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 March 2018.
All research outputs
#17,934,709
of 23,028,364 outputs
Outputs from Journal of Physiology and Biochemistry
#393
of 537 outputs
Outputs of similar age
#241,469
of 332,279 outputs
Outputs of similar age from Journal of Physiology and Biochemistry
#5
of 8 outputs
Altmetric has tracked 23,028,364 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 537 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 23rd percentile – i.e., 23% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 332,279 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 22nd percentile – i.e., 22% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 8 others from the same source and published within six weeks on either side of this one. This one has scored higher than 3 of them.