↓ Skip to main content

Protein profiling as early detection biomarkers for TiO2 nanoparticle toxicity in Daphnia magna

Overview of attention for article published in Ecotoxicology, March 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users
facebook
1 Facebook page

Citations

dimensions_citation
16 Dimensions

Readers on

mendeley
33 Mendeley
Title
Protein profiling as early detection biomarkers for TiO2 nanoparticle toxicity in Daphnia magna
Published in
Ecotoxicology, March 2018
DOI 10.1007/s10646-018-1907-7
Pubmed ID
Authors

Paula Sá-Pereira, Mário S. Diniz, Liliana Moita, Teresa Pinheiro, Elsa Mendonça, Susana M. Paixão, Ana Picado

Abstract

The mode of action for nanoparticle (NP) toxicity in aquatic organisms is not yet fully understood. In this work, a strategy other than toxicity testing was applied to Daphnia magna exposed to TiO2-NPs: the use of nuclear microscopy and the assessment of protein profile. D. magna is a keystone species broadly used as a model system in ecotoxicology. Titanium (Ti) was found in the D. magna digestive tract, mainly in the gut. The penetration of Ti into the epithelial region was greater at higher exposure levels and also observed in eggs in the brood pouch. The protein profile of individuals exposed to different concentrations showed that 2.8 and 5.6 mg/L TiO2-NP concentrations induced an over-expression of the majority of proteins, in particular proteins with molecular weight of ∼120, 85 and 15 kDa, while 11.2 mg/L TiO2-NP had an inhibitory effect on protein expression. The Matrix-assisted laser desorption ionization with tandem time of flight mass spectrometry (MALDI-TOF/TOF MS) analysis of these proteins consistently identified them as vitellogenin (Vtg)-like proteins, associated with enzymes involved in redox balance. These results indicate that Vtg-like proteins are up-regulated in D. magna exposed to TiO2-NPs. Vitellogenesis is associated with the reproduction system, suggesting that TiO2-NP exposure can impair reproduction by affecting this process. The precise mode of action of TiO2-NPs is still unclear and the results from this study are a first attempt to identify specific proteins as potential markers of TiO2-NP toxicity in D. magna, providing useful information for future research.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 33 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 33 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 7 21%
Student > Master 6 18%
Professor > Associate Professor 3 9%
Student > Doctoral Student 2 6%
Student > Ph. D. Student 2 6%
Other 4 12%
Unknown 9 27%
Readers by discipline Count As %
Environmental Science 7 21%
Chemistry 5 15%
Agricultural and Biological Sciences 4 12%
Biochemistry, Genetics and Molecular Biology 2 6%
Medicine and Dentistry 1 3%
Other 3 9%
Unknown 11 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 05 September 2018.
All research outputs
#15,495,840
of 23,028,364 outputs
Outputs from Ecotoxicology
#658
of 1,481 outputs
Outputs of similar age
#211,608
of 331,443 outputs
Outputs of similar age from Ecotoxicology
#21
of 37 outputs
Altmetric has tracked 23,028,364 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,481 research outputs from this source. They receive a mean Attention Score of 3.5. This one has gotten more attention than average, scoring higher than 50% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 331,443 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 37 others from the same source and published within six weeks on either side of this one. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.