↓ Skip to main content

Impact of soil pedogenesis on the diversity and composition of fungal communities across the California soil chronosequence of Mendocino

Overview of attention for article published in Mycorrhiza, March 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
10 Dimensions

Readers on

mendeley
46 Mendeley
Title
Impact of soil pedogenesis on the diversity and composition of fungal communities across the California soil chronosequence of Mendocino
Published in
Mycorrhiza, March 2018
DOI 10.1007/s00572-018-0829-9
Pubmed ID
Authors

P. E. Courty, M. Buée, J. J. T. Tech, D. Brulé, Y. Colin, J. H. J. Leveau, S. Uroz

Abstract

Understanding how soil pedogenesis affects microbial communities and their in situ activities according to ecosystem functioning is a central issue in soil microbial ecology, as soils represent essential nutrient reservoirs and habitats for the biosphere. To address this question, soil chronosequences developed from a single, shared mineralogical parent material and having the same climate conditions are particularly useful, as they isolate the factor of time from other factors controlling the character of soils. In our study, we considered a natural succession of uplifted marine terraces in Mendocino, CA, ranging from highly fertile in the younger terrace (about 100,000 years old) to infertile in the older terraces (about 300,000 years old). Using ITS amplicon pyrosequencing, we analysed and compared the diversity and composition of the soil fungal communities across the first terraces (T1 to T3), with a specific focus in the forested terraces (T2 and T3) on soil samples collected below trees of the same species (Pinus muricata) and of the same age. While diversity and richness indices were highest in the grassland (youngest) terrace (T1), they were higher in the older forested terrace (T3) compared to the younger forested terrace (T2). Interestingly, the most abundant ectomycorrhizal (ECM) taxa that we found within these fungal communities showed high homology with ITS Sanger sequences obtained previously directly from ECM root tips from trees in the same study site, revealing a relative conservation of ECM diversity over time. Altogether, our results provide new information about the diversity and composition of the fungal communities as well as on the dominant ECM species in the soil chronosequence of Mendocino in relation to soil age and ecosystem development.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 46 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 46 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 9 20%
Student > Master 7 15%
Student > Ph. D. Student 6 13%
Student > Doctoral Student 3 7%
Student > Bachelor 2 4%
Other 6 13%
Unknown 13 28%
Readers by discipline Count As %
Agricultural and Biological Sciences 13 28%
Environmental Science 10 22%
Biochemistry, Genetics and Molecular Biology 2 4%
Business, Management and Accounting 1 2%
Earth and Planetary Sciences 1 2%
Other 0 0%
Unknown 19 41%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 September 2018.
All research outputs
#14,096,200
of 23,028,364 outputs
Outputs from Mycorrhiza
#332
of 656 outputs
Outputs of similar age
#181,206
of 331,163 outputs
Outputs of similar age from Mycorrhiza
#7
of 10 outputs
Altmetric has tracked 23,028,364 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 656 research outputs from this source. They receive a mean Attention Score of 3.4. This one is in the 47th percentile – i.e., 47% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 331,163 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 10 others from the same source and published within six weeks on either side of this one. This one has scored higher than 3 of them.