↓ Skip to main content

Thermodynamics in Neurodegenerative Diseases: Interplay Between Canonical WNT/Beta-Catenin Pathway–PPAR Gamma, Energy Metabolism and Circadian Rhythms

Overview of attention for article published in NeuroMolecular Medicine, March 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (79th percentile)
  • Good Attention Score compared to outputs of the same age and source (77th percentile)

Mentioned by

news
1 news outlet
twitter
2 X users

Citations

dimensions_citation
39 Dimensions

Readers on

mendeley
48 Mendeley
Title
Thermodynamics in Neurodegenerative Diseases: Interplay Between Canonical WNT/Beta-Catenin Pathway–PPAR Gamma, Energy Metabolism and Circadian Rhythms
Published in
NeuroMolecular Medicine, March 2018
DOI 10.1007/s12017-018-8486-x
Pubmed ID
Authors

Alexandre Vallée, Yves Lecarpentier, Rémy Guillevin, Jean-Noël Vallée

Abstract

Entropy production rate is increased by several metabolic and thermodynamics abnormalities in neurodegenerative diseases (NDs). Irreversible processes are quantified by changes in the entropy production rate. This review is focused on the opposing interactions observed in NDs between the canonical WNT/beta-catenin pathway and PPAR gamma and their metabolic and thermodynamic implications. In amyotrophic lateral sclerosis and Huntington's disease, WNT/beta-catenin pathway is upregulated, whereas PPAR gamma is downregulated. In Alzheimer's disease and Parkinson's disease, WNT/beta-catenin pathway is downregulated while PPAR gamma is upregulated. The dysregulation of the canonical WNT/beta-catenin pathway is responsible for the modification of thermodynamics behaviors of metabolic enzymes. Upregulation of WNT/beta-catenin pathway leads to aerobic glycolysis, named Warburg effect, through activated enzymes, such as glucose transporter (Glut), pyruvate kinase M2 (PKM2), pyruvate dehydrogenase kinase 1(PDK1), monocarboxylate lactate transporter 1 (MCT-1), lactic dehydrogenase kinase-A (LDH-A) and inactivation of pyruvate dehydrogenase complex (PDH). Downregulation of WNT/beta-catenin pathway leads to oxidative stress and cell death through inactivation of Glut, PKM2, PDK1, MCT-1, LDH-A but activation of PDH. In addition, in NDs, PPAR gamma is dysregulated, whereas it contributes to the regulation of several key circadian genes. NDs show many dysregulation in the mediation of circadian clock genes and so of circadian rhythms. Thermodynamics rhythms operate far-from-equilibrium and partly regulate interactions between WNT/beta-catenin pathway and PPAR gamma. In NDs, metabolism, thermodynamics and circadian rhythms are tightly interrelated.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 48 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 48 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 9 19%
Student > Ph. D. Student 5 10%
Researcher 3 6%
Professor > Associate Professor 3 6%
Professor 3 6%
Other 12 25%
Unknown 13 27%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 7 15%
Agricultural and Biological Sciences 6 13%
Medicine and Dentistry 6 13%
Neuroscience 6 13%
Pharmacology, Toxicology and Pharmaceutical Science 4 8%
Other 7 15%
Unknown 12 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 10. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 March 2018.
All research outputs
#3,102,914
of 23,028,364 outputs
Outputs from NeuroMolecular Medicine
#67
of 449 outputs
Outputs of similar age
#66,266
of 331,443 outputs
Outputs of similar age from NeuroMolecular Medicine
#2
of 9 outputs
Altmetric has tracked 23,028,364 research outputs across all sources so far. Compared to these this one has done well and is in the 86th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 449 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.3. This one has done well, scoring higher than 84% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 331,443 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 79% of its contemporaries.
We're also able to compare this research output to 9 others from the same source and published within six weeks on either side of this one. This one has scored higher than 7 of them.