↓ Skip to main content

An intronless form of the tobacco extensin gene terminator strongly enhances transient gene expression in plant leaves

Overview of attention for article published in Plant Molecular Biology, February 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (76th percentile)
  • High Attention Score compared to outputs of the same age and source (88th percentile)

Mentioned by

twitter
1 X user
patent
3 patents

Citations

dimensions_citation
22 Dimensions

Readers on

mendeley
47 Mendeley
Title
An intronless form of the tobacco extensin gene terminator strongly enhances transient gene expression in plant leaves
Published in
Plant Molecular Biology, February 2018
DOI 10.1007/s11103-018-0708-y
Pubmed ID
Authors

Sun Hee Rosenthal, Andrew G. Diamos, Hugh S. Mason

Abstract

We have found interesting features of a plant gene (extensin) 3' flanking region, including extremely efficient polyadenylation which greatly improves transient expression of transgenes when an intron is removed. Its use will greatly benefit studies of gene expression in plants, research in molecular biology, and applications for recombinant proteins. Plants are a promising platform for the production of recombinant proteins. To express high-value proteins in plants efficiently, the optimization of expression cassettes using appropriate regulatory sequences is critical. Here, we characterize the activity of the tobacco extensin (Ext) gene terminator by transient expression in Nicotiana benthamiana, tobacco, and lettuce. Ext is a member of the hydroxyproline-rich glycoprotein (HRGP) superfamily and constitutes the major protein component of cell walls. The present study demonstrates that the Ext terminator with its native intron removed increased transient gene expression up to 13.5-fold compared to previously established terminators. The enhanced transgene expression was correlated with increased mRNA accumulation and reduced levels of read-through transcripts, which could impair gene expression. Analysis of transcript 3'-ends found that the majority of polyadenylated transcripts were cleaved at a YA dinucleotide downstream from a canonical AAUAAA motif and a UG-rich region, both of which were found to be highly conserved among related extensin terminators. Deletion of either of these regions eliminated most of the activity of the terminator. Additionally, a 45 nt polypurine sequence ~ 175 nt upstream from the polyadenylation sites was found to also be necessary for the enhanced expression. We conclude that the use of Ext terminator has great potential to benefit the production of recombinant proteins in plants.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 47 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 47 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 10 21%
Researcher 6 13%
Student > Bachelor 4 9%
Other 2 4%
Student > Postgraduate 2 4%
Other 6 13%
Unknown 17 36%
Readers by discipline Count As %
Agricultural and Biological Sciences 12 26%
Biochemistry, Genetics and Molecular Biology 10 21%
Medicine and Dentistry 3 6%
Business, Management and Accounting 1 2%
Unspecified 1 2%
Other 1 2%
Unknown 19 40%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 7. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 January 2024.
All research outputs
#4,592,734
of 23,106,934 outputs
Outputs from Plant Molecular Biology
#381
of 2,848 outputs
Outputs of similar age
#104,865
of 444,636 outputs
Outputs of similar age from Plant Molecular Biology
#2
of 18 outputs
Altmetric has tracked 23,106,934 research outputs across all sources so far. Compared to these this one has done well and is in the 79th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 2,848 research outputs from this source. They receive a mean Attention Score of 4.3. This one has done well, scoring higher than 86% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 444,636 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 76% of its contemporaries.
We're also able to compare this research output to 18 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 88% of its contemporaries.