↓ Skip to main content

Loss of cone function without degeneration in a novel Gnat2 knock-out mouse

Overview of attention for article published in Experimental Eye Research, March 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Good Attention Score compared to outputs of the same age and source (69th percentile)

Mentioned by

twitter
1 X user
f1000
1 research highlight platform

Citations

dimensions_citation
25 Dimensions

Readers on

mendeley
23 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Loss of cone function without degeneration in a novel Gnat2 knock-out mouse
Published in
Experimental Eye Research, March 2018
DOI 10.1016/j.exer.2018.02.024
Pubmed ID
Authors

Kaitryn E. Ronning, Gabriel Peinado Allina, Eric B. Miller, Robert J. Zawadzki, Edward N. Pugh, Rolf Herrmann, Marie E. Burns

Abstract

Rods and cones mediate visual perception over 9 log units of light intensities, with both photoreceptor types contributing to a middle 3-log unit range that comprises most night-time conditions. Rod function in this mesopic range has been difficult to isolate and study in vivo because of the paucity of mutants that abolish cone signaling without causing photoreceptor degeneration. Here we describe a novel Gnat2 knockout mouse line (Gnat2-/-) ideal for dissecting rod and cone function. In this line, loss of Gnat2 expression abolished cone phototransduction, yet there was no loss of cones, disruption of the photoreceptor mosaic, nor change in general retinal morphology up to at least 9 months of age. Retinal microglia and Müller glia, which are highly sensitive to neuronal pathophysiology, were distributed normally with morphologies indistinguishable between Gnat2-/- and wildtype adult mice. ERG recordings demonstrated complete loss of cone-driven a-waves in Gnat2-/- mice; comparison to WT controls revealed that rods of both strains continue to function at light intensities exceeding 104 photoisomerizations rod-1 s-1. We conclude that the Gnat2-/- mouse is a preferred model for functional studies of rod pathways in the retina when degeneration could be an experimental confound.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 23 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 23 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 26%
Researcher 5 22%
Other 3 13%
Student > Bachelor 3 13%
Student > Master 2 9%
Other 3 13%
Unknown 1 4%
Readers by discipline Count As %
Neuroscience 6 26%
Agricultural and Biological Sciences 5 22%
Medicine and Dentistry 2 9%
Veterinary Science and Veterinary Medicine 2 9%
Pharmacology, Toxicology and Pharmaceutical Science 1 4%
Other 4 17%
Unknown 3 13%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 September 2021.
All research outputs
#16,728,456
of 25,382,440 outputs
Outputs from Experimental Eye Research
#1,989
of 2,935 outputs
Outputs of similar age
#213,808
of 347,366 outputs
Outputs of similar age from Experimental Eye Research
#15
of 53 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,935 research outputs from this source. They receive a mean Attention Score of 4.5. This one is in the 30th percentile – i.e., 30% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 347,366 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 35th percentile – i.e., 35% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 53 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 69% of its contemporaries.