↓ Skip to main content

Paraventricular hypothalamic and amygdalar CRF neurons synapse in the external globus pallidus

Overview of attention for article published in Brain Structure and Function, March 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (83rd percentile)
  • High Attention Score compared to outputs of the same age and source (83rd percentile)

Mentioned by

twitter
21 X users

Citations

dimensions_citation
43 Dimensions

Readers on

mendeley
57 Mendeley
Title
Paraventricular hypothalamic and amygdalar CRF neurons synapse in the external globus pallidus
Published in
Brain Structure and Function, March 2018
DOI 10.1007/s00429-018-1652-y
Pubmed ID
Authors

Albert J. Hunt, Rajan Dasgupta, Shivakumar Rajamanickam, Zhiying Jiang, Michael Beierlein, C. Savio Chan, Nicholas J. Justice

Abstract

Stress evokes directed movement to escape or hide from potential danger. Corticotropin-releasing factor (CRF) neurons are highly activated by stress; however, it remains unclear how this activity participates in stress-evoked movement. The external globus pallidus (GPe) expresses high levels of the primary receptor for CRF, CRFR1, suggesting the GPe may serve as an entry point for stress-relevant information to reach basal ganglia circuits, which ultimately gate motor output. Indeed, projections from CRF neurons are present within the GPe, making direct contact with CRFR1-positive neurons. CRFR1 expression is heterogenous in the GPe; prototypic GPe neurons selectively express CRFR1, while arkypallidal neurons do not. Moreover, CRFR1-positive GPe neurons are excited by CRF via activation of CRFR1, while nearby CRFR1-negative neurons do not respond to CRF. Using monosynaptic rabies viral tracing techniques, we show that CRF neurons in the stress-activated paraventricular nucleus of the hypothalamus (PVN), central nucleus of the amygdala (CeA), and bed nucleus of the stria terminalis (BST) make synaptic connections with CRFR1-positive neurons in the GPe an unprecedented circuit connecting the limbic system with the basal ganglia. CRF neurons also make synapses on Npas1 neurons, although the majority of Npas1 neurons are arkypallidal and do not express CRFR1. Interestingly, prototypic and arkypallidal neurons receive different patterns of innervation from CRF-rich nuclei. Hypothalamic CRF neurons preferentially target prototypic neurons, while amygdalar CRF neurons preferentially target arkypallidal neurons, suggesting that these two inputs to the GPe may have different impacts on GPe output. Together, these data describe a novel neural circuit by which stress-relevant information carried by the limbic system signals in the GPe via CRF to influence motor output.

X Demographics

X Demographics

The data shown below were collected from the profiles of 21 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 57 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 57 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 14 25%
Student > Master 8 14%
Researcher 6 11%
Student > Bachelor 4 7%
Student > Postgraduate 3 5%
Other 7 12%
Unknown 15 26%
Readers by discipline Count As %
Neuroscience 22 39%
Agricultural and Biological Sciences 7 12%
Medicine and Dentistry 3 5%
Biochemistry, Genetics and Molecular Biology 2 4%
Veterinary Science and Veterinary Medicine 2 4%
Other 4 7%
Unknown 17 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 13. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 05 April 2018.
All research outputs
#2,631,397
of 24,217,893 outputs
Outputs from Brain Structure and Function
#181
of 1,725 outputs
Outputs of similar age
#55,692
of 334,944 outputs
Outputs of similar age from Brain Structure and Function
#7
of 42 outputs
Altmetric has tracked 24,217,893 research outputs across all sources so far. Compared to these this one has done well and is in the 89th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,725 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.0. This one has done well, scoring higher than 89% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 334,944 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 83% of its contemporaries.
We're also able to compare this research output to 42 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 83% of its contemporaries.