↓ Skip to main content

Genome-wide transcriptional analyses in Anopheles mosquitoes reveal an unexpected association between salivary gland gene expression and insecticide resistance

Overview of attention for article published in BMC Genomics, March 2018
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (62nd percentile)
  • Good Attention Score compared to outputs of the same age and source (66th percentile)

Mentioned by

twitter
7 X users

Citations

dimensions_citation
31 Dimensions

Readers on

mendeley
73 Mendeley
citeulike
2 CiteULike
Title
Genome-wide transcriptional analyses in Anopheles mosquitoes reveal an unexpected association between salivary gland gene expression and insecticide resistance
Published in
BMC Genomics, March 2018
DOI 10.1186/s12864-018-4605-1
Pubmed ID
Authors

Alison T. Isaacs, Henry D. Mawejje, Sean Tomlinson, Daniel J. Rigden, Martin J. Donnelly

Abstract

To combat malaria transmission, the Ugandan government has embarked upon an ambitious programme of indoor residual spraying (IRS) with a carbamate class insecticide, bendiocarb. In preparation for this campaign, we characterized bendiocarb resistance and associated transcriptional variation among Anopheles gambiae s.s. mosquitoes from two sites in Uganda. Gene expression in two mosquito populations displaying some resistance to bendiocarb (95% and 79% An. gambiae s.l. WHO tube bioassay mortality in Nagongera and Kihihi, respectively) was investigated using whole-genome microarrays. Significant overexpression of several genes encoding salivary gland proteins, including D7r2 and D7r4, was detected in mosquitoes from Nagongera. In Kihihi, D7r4, two detoxification-associated genes (Cyp6m2 and Gstd3) and an epithelial serine protease were among the genes most highly overexpressed in resistant mosquitoes. Following the first round of IRS in Nagongera, bendiocarb-resistant mosquitoes were collected, and real-time quantitative PCR analyses detected significant overexpression of D7r2 and D7r4 in resistant mosquitoes. A single nucleotide polymorphism located in a non-coding transcript downstream of the D7 genes was found at a significantly higher frequency in resistant individuals. In silico modelling of the interaction between D7r4 and bendiocarb demonstrated similarity between the insecticide and serotonin, a known ligand of D7 proteins. A meta-analysis of published microarray studies revealed a recurring association between D7 expression and insecticide resistance across Anopheles species and locations. A whole-genome microarray approach identified an association between novel insecticide resistance candidates and bendiocarb resistance in Uganda. In addition, a single nucleotide polymorphism associated with this resistance mechanism was discovered. The use of such impartial screening methods allows for discovery of resistance candidates that have no previously-ascribed function in insecticide binding or detoxification. Characterizing these novel candidates will broaden our understanding of resistance mechanisms and yield new strategies for combatting widespread insecticide resistance among malaria vectors.

X Demographics

X Demographics

The data shown below were collected from the profiles of 7 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 73 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 73 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 14 19%
Student > Master 12 16%
Student > Ph. D. Student 10 14%
Student > Bachelor 6 8%
Student > Doctoral Student 3 4%
Other 9 12%
Unknown 19 26%
Readers by discipline Count As %
Agricultural and Biological Sciences 16 22%
Biochemistry, Genetics and Molecular Biology 13 18%
Nursing and Health Professions 6 8%
Immunology and Microbiology 4 5%
Business, Management and Accounting 2 3%
Other 10 14%
Unknown 22 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 September 2018.
All research outputs
#7,284,512
of 23,881,329 outputs
Outputs from BMC Genomics
#3,275
of 10,793 outputs
Outputs of similar age
#123,386
of 332,098 outputs
Outputs of similar age from BMC Genomics
#71
of 216 outputs
Altmetric has tracked 23,881,329 research outputs across all sources so far. This one has received more attention than most of these and is in the 69th percentile.
So far Altmetric has tracked 10,793 research outputs from this source. They receive a mean Attention Score of 4.8. This one has gotten more attention than average, scoring higher than 69% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 332,098 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 62% of its contemporaries.
We're also able to compare this research output to 216 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 66% of its contemporaries.