↓ Skip to main content

pDHS-ELM: computational predictor for plant DNase I hypersensitive sites based on extreme learning machines

Overview of attention for article published in Molecular Genetics and Genomics, March 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
16 Dimensions

Readers on

mendeley
12 Mendeley
Title
pDHS-ELM: computational predictor for plant DNase I hypersensitive sites based on extreme learning machines
Published in
Molecular Genetics and Genomics, March 2018
DOI 10.1007/s00438-018-1436-3
Pubmed ID
Authors

Shanxin Zhang, Minjun Chang, Zhiping Zhou, Xiaofeng Dai, Zhenghong Xu

Abstract

DNase I hypersensitive sites (DHSs) are hallmarks of chromatin zones containing transcriptional regulatory elements, making them critical in understanding the regulatory mechanisms of gene expression. Although large amounts of DHSs in the plant genome have been identified by high-throughput techniques, current DHSs obtained from experimental methods cover only a fraction of plant species and cell processes. Furthermore, these experimental methods are both time-consuming and expensive. Hence, it is urgent to develop automated computational means to efficiently and accurately predict DHSs in the plant genome. Recently, several methods have been proposed to predict the DHSs. However, all these methods took a lot of time to build the model, making them inappropriate for data with massive volume. In the present work, a new ensemble extreme learning machine (ELM)-based model called pDHS-ELM was proposed to predict the DHSs in the plant genome by fusing two different modes of pseudo-nucleotide composition. Here, two kinds of features including reverse complement kmer and pseudo-nucleotide composition were used to represent the DHSs. The ELM model was used to build the base classifiers. Then, an ensemble framework was employed to combine the outputs of these base classifiers. When applied to DHSs in Arabidopsis thaliana and rice (Oryza sativa) genome, the proposed method could obtain accuracies up to 88.48 and 87.58%, respectively. Compared with the state-of-the-art techniques, pDHS-ELM achieved higher sensitivity, specificity, and Matthew's correlation coefficient with much less training and test time. By employing pDHS-ELM, we identified 42,370 and 103,979 DHSs in A. thaliana and rice genome, respectively. The predicted DHSs were depleted of bulk nucleosomes and were tightly associated with transcription factors. Approximately 90% of the predicted DHSs were overlapped with transcription factors. Meanwhile, we demonstrated that the predicted DHSs were also associated with DNA methylation, nucleosome positioning/occupancy, and histone modification. This result suggests that pDHS-ELM can be considered as a new promising and powerful tool for transcriptional regulatory elements analysis. Our pDHS-ELM tool is available from the following website https://github.com/shanxinzhang/pDHS-ELM/ .

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 12 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 12 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 3 25%
Student > Master 2 17%
Other 1 8%
Lecturer > Senior Lecturer 1 8%
Student > Bachelor 1 8%
Other 0 0%
Unknown 4 33%
Readers by discipline Count As %
Computer Science 3 25%
Biochemistry, Genetics and Molecular Biology 2 17%
Agricultural and Biological Sciences 1 8%
Medicine and Dentistry 1 8%
Materials Science 1 8%
Other 0 0%
Unknown 4 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 March 2018.
All research outputs
#22,767,715
of 25,382,440 outputs
Outputs from Molecular Genetics and Genomics
#3,137
of 3,321 outputs
Outputs of similar age
#304,181
of 344,233 outputs
Outputs of similar age from Molecular Genetics and Genomics
#7
of 9 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,321 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 344,233 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 9 others from the same source and published within six weeks on either side of this one. This one has scored higher than 2 of them.