↓ Skip to main content

Suppression and Overexpression of Adenosylhomocysteine Hydrolase-like Protein 1 (AHCYL1) Influences Zebrafish Embryo Development A POSSIBLE ROLE FOR AHCYL1 IN INOSITOL PHOSPHOLIPID SIGNALING*

Overview of attention for article published in Journal of Biological Chemistry, June 2006
Altmetric Badge

Mentioned by

wikipedia
3 Wikipedia pages

Citations

dimensions_citation
21 Dimensions

Readers on

mendeley
23 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Suppression and Overexpression of Adenosylhomocysteine Hydrolase-like Protein 1 (AHCYL1) Influences Zebrafish Embryo Development A POSSIBLE ROLE FOR AHCYL1 IN INOSITOL PHOSPHOLIPID SIGNALING*
Published in
Journal of Biological Chemistry, June 2006
DOI 10.1074/jbc.m602520200
Pubmed ID
Authors

Benjamine J. Cooper, Brian Key, Adrian Carter, Nicola Z. Angel, Derek N.J. Hart, Masato Kato

Abstract

Adenosylhomocysteine hydrolase-like protein 1 (AHCYL1) is a novel intracellular protein with approximately 50% protein identity to adenosylhomocysteine hydrolase (AHCY), an important enzyme for metabolizing S-adenosyl-l-homocysteine, the by-product of S-adenosyl-l-homomethionine-dependent methylation. AHCYL1 binds to the inositol 1,4,5-trisphosphate receptor, suggesting that AHCYL1 is involved in intracellular calcium release. We identified two zebrafish AHCYL1 orthologs (zAHCYL1A and -B) by bioinformatics and reverse transcription-PCR. Unlike the ubiquitously present AHCY genes, AHCYL1 genes were only detected in segmented animals, and AHCYL1 proteins were highly conserved among species. Phylogenic analysis suggested that the AHCYL1 gene diverged early from AHCY and evolved independently. Quantitative reverse transcription-PCR showed that zAHCYL1A and -B mRNA expression was regulated differently from the other AHCY-like protein zAHCYL2 and zAHCY during zebrafish embryogenesis. Injection of morpholino antisense oligonucleotides against zAHCYL1A and -B into zebrafish embryos inhibited zAHCYL1A and -B mRNA translation specifically and induced ventralized morphologies. Conversely, human and zebrafish AHCYL1A mRNA injection into zebrafish embryos induced dorsalized morphologies that were similar to those obtained by depleting intracellular calcium with thapsigargin. Human AHCY mRNA injection showed little effect on the embryos. These data suggest that AHCYL1 has a different function from AHCY and plays an important role in embryogenesis by modulating inositol 1,4,5-trisphosphate receptor function for the intracellular calcium release.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 23 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 23 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 22%
Researcher 5 22%
Student > Doctoral Student 2 9%
Student > Bachelor 2 9%
Professor 2 9%
Other 3 13%
Unknown 4 17%
Readers by discipline Count As %
Agricultural and Biological Sciences 8 35%
Biochemistry, Genetics and Molecular Biology 6 26%
Immunology and Microbiology 1 4%
Psychology 1 4%
Medicine and Dentistry 1 4%
Other 1 4%
Unknown 5 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 April 2024.
All research outputs
#8,534,976
of 25,373,627 outputs
Outputs from Journal of Biological Chemistry
#32,956
of 85,238 outputs
Outputs of similar age
#30,311
of 89,161 outputs
Outputs of similar age from Journal of Biological Chemistry
#217
of 513 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. This one is in the 43rd percentile – i.e., 43% of other outputs scored the same or lower than it.
So far Altmetric has tracked 85,238 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.1. This one is in the 15th percentile – i.e., 15% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 89,161 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 13th percentile – i.e., 13% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 513 others from the same source and published within six weeks on either side of this one. This one is in the 9th percentile – i.e., 9% of its contemporaries scored the same or lower than it.