↓ Skip to main content

Directed-Backbone Dissociation Following Bond-Specific Carbon-Sulfur UVPD at 213 nm

Overview of attention for article published in Journal of the American Society for Mass Spectrometry, April 2018
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
16 Dimensions

Readers on

mendeley
36 Mendeley
Title
Directed-Backbone Dissociation Following Bond-Specific Carbon-Sulfur UVPD at 213 nm
Published in
Journal of the American Society for Mass Spectrometry, April 2018
DOI 10.1007/s13361-018-1934-x
Pubmed ID
Authors

Lance E. Talbert, Ryan R. Julian

Abstract

Ultraviolet photodissociation or UVPD is an increasingly popular option for tandem-mass spectrometry experiments. UVPD can be carried out at many wavelengths, and it is important to understand how the results will be impacted by this choice. Here, we explore the utility of 213 nm photons for initiating bond-selective fragmentation. It is found that bonds previously determined to be labile at 266 nm, including carbon-iodine and sulfur-sulfur bonds, can also be cleaved with high selectivity at 213 nm. In addition, many carbon-sulfur bonds that are not subject to direct dissociation at 266 nm can be selectively fragmented at 213 nm. This capability can be used to site-specifically create alaninyl radicals that direct backbone dissociation at the radical site, creating diagnostic d-ions. Furthermore, the additional carbon-sulfur bond fragmentation capability leads to signature triplets for fragmentation of disulfide bonds. Absorption of amide bonds can enhance dissociation of nearby labile carbon-sulfur bonds and can be used for stochastic backbone fragmentation typical of UVPD experiments at shorter wavelengths. Several potential applications of the bond-selective fragmentation chemistry observed at 213 nm are discussed. Graphical Abstract ᅟ.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 36 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 36 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 14 39%
Student > Master 5 14%
Professor 3 8%
Other 2 6%
Student > Bachelor 2 6%
Other 3 8%
Unknown 7 19%
Readers by discipline Count As %
Chemistry 21 58%
Biochemistry, Genetics and Molecular Biology 2 6%
Physics and Astronomy 2 6%
Unspecified 1 3%
Pharmacology, Toxicology and Pharmaceutical Science 1 3%
Other 2 6%
Unknown 7 19%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 August 2018.
All research outputs
#20,663,600
of 25,382,440 outputs
Outputs from Journal of the American Society for Mass Spectrometry
#3,086
of 3,835 outputs
Outputs of similar age
#268,117
of 343,387 outputs
Outputs of similar age from Journal of the American Society for Mass Spectrometry
#56
of 78 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 10th percentile – i.e., 10% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,835 research outputs from this source. They receive a mean Attention Score of 3.8. This one is in the 10th percentile – i.e., 10% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 343,387 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 11th percentile – i.e., 11% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 78 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.