↓ Skip to main content

American Association for Cancer Research

Gallium Maltolate Disrupts Tumor Iron Metabolism and Retards the Growth of Glioblastoma by Inhibiting Mitochondrial Function and Ribonucleotide Reductase

Overview of attention for article published in Molecular Cancer Therapeutics, March 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (87th percentile)
  • High Attention Score compared to outputs of the same age and source (90th percentile)

Mentioned by

news
1 news outlet
twitter
13 X users

Citations

dimensions_citation
41 Dimensions

Readers on

mendeley
50 Mendeley
Title
Gallium Maltolate Disrupts Tumor Iron Metabolism and Retards the Growth of Glioblastoma by Inhibiting Mitochondrial Function and Ribonucleotide Reductase
Published in
Molecular Cancer Therapeutics, March 2018
DOI 10.1158/1535-7163.mct-17-1009
Pubmed ID
Authors

Christopher R Chitambar, Mona M Al-Gizawiy, Hisham S Alhajala, Kimberly R Pechman, Janine P Wereley, Robert Wujek, Paul A Clark, John S Kuo, William E Antholine, Kathleen M Schmainda

Abstract

Gallium, a metal with antineoplastic activity, binds transferrin (Tf) and enters tumor cells via Tf receptor1 (TfR1); it disrupts iron homeostasis leading to cell death. We hypothesized that TfR1 on brain microvascular endothelial cells (BMECs) would facilitate Tf-Ga transport into the brain enabling it to target TfR-bearing glioblastoma. We show that U-87 MG and D54 glioblastoma cell lines and multiple glioblastoma stem cell (GSCs) lines express TfRs and that their growth is inhibited by gallium maltolate (GaM) in vitro. After 24-h of incubation with GaM, cells displayed a loss of mitochondrial reserve capacity followed by a dose-dependent decrease in oxygen consumption and a decrease in the activity of the iron-dependent M2 subunit of ribonucleotide reductase (RRM2). Immunohistochemical staining of rat and human tumor-bearing brains showed that glioblastoma, but not normal glial cells, expressed TfR1 and RRM2 and that glioblastoma expressed greater levels of H- and L-ferritin than normal brain. In an orthotopic U-87 MG glioblastoma xenograft rat model, GaM retarded the growth of brain tumors relative to untreated control (p=0.0159) and reduced tumor mitotic figures (p=0.045). Tumors in GaM-treated animals displayed an upregulation of TfR1 expression relative to control animals thus indicating that gallium produced tumor iron deprivation. GaM also inhibited iron uptake and upregulated TfR1 expression in U-87 MG and D54 cells in vitro. We conclude that GaM enters the brain via TfR1 on BMECs and targets iron metabolism in glioblastoma in vivo, thus inhibiting tumor growth. Further development of novel gallium compounds for brain tumor treatment is warranted.

X Demographics

X Demographics

The data shown below were collected from the profiles of 13 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 50 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 50 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 16%
Researcher 6 12%
Student > Bachelor 5 10%
Student > Doctoral Student 4 8%
Student > Master 3 6%
Other 6 12%
Unknown 18 36%
Readers by discipline Count As %
Medicine and Dentistry 10 20%
Biochemistry, Genetics and Molecular Biology 5 10%
Chemistry 5 10%
Agricultural and Biological Sciences 3 6%
Neuroscience 3 6%
Other 5 10%
Unknown 19 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 19. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 December 2023.
All research outputs
#1,903,664
of 24,980,180 outputs
Outputs from Molecular Cancer Therapeutics
#198
of 4,043 outputs
Outputs of similar age
#40,436
of 335,359 outputs
Outputs of similar age from Molecular Cancer Therapeutics
#6
of 51 outputs
Altmetric has tracked 24,980,180 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 92nd percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 4,043 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.8. This one has done particularly well, scoring higher than 95% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 335,359 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 87% of its contemporaries.
We're also able to compare this research output to 51 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 90% of its contemporaries.