↓ Skip to main content

The Antarctic sea ice alga Chlamydomonas sp. ICE-L provides insights into adaptive patterns of chloroplast evolution

Overview of attention for article published in BMC Plant Biology, April 2018
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age and source (51st percentile)

Mentioned by

twitter
3 X users

Citations

dimensions_citation
19 Dimensions

Readers on

mendeley
38 Mendeley
Title
The Antarctic sea ice alga Chlamydomonas sp. ICE-L provides insights into adaptive patterns of chloroplast evolution
Published in
BMC Plant Biology, April 2018
DOI 10.1186/s12870-018-1273-x
Pubmed ID
Authors

Zhenhua Zhang, Meiling An, Jinlai Miao, Zhiqiang Gu, Chang Liu, Bojian Zhong

Abstract

The ice alga Chlamydomonas sp. ICE-L is the main contributor to primary productivity in Antarctic sea ice ecosystems and is well adapted to the extremely harsh environment. However, the adaptive mechanism of Chlamydomonas sp. ICE-L to sea-ice environment remains unclear. To study the adaptive strategies in Chlamydomonas sp. ICE-L, we investigated the molecular evolution of chloroplast photosynthetic genes that are essential for the accumulation of carbohydrate and energy living in Antarctic sea ice. The 60 chloroplast protein-coding genes of Chlamydomonas sp. ICE-L were obtained, and the branch-site test detected significant signatures of positive selection on atpB, psaB, and rbcL genes in Chlamydomonas sp. ICE-L associated with the photosynthetic machinery. These positively selected genes were further identified as being under convergent evolution between Chlamydomonas sp. ICE-L and the halotolerant alga Dunaliella salina. Our study provides evidence that the phototrophic component of Chlamydomonas sp. ICE-L exhibits adaptive evolution under extreme environment. The positive Darwinian selection operates on the chloroplast protein-coding genes of Antarctic ice algae adapted to extreme environment following functional-specific and lineages-specific patterns. In addition, three positively selected genes with convergent substitutions in Chlamydomonas sp. ICE-L were identified, and the adaptive modifications in these genes were in functionally important regions of the proteins. Our study provides a foundation for future experiments on the biochemical and physiological impacts of photosynthetic genes in green algae.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 38 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 38 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 6 16%
Student > Master 4 11%
Researcher 4 11%
Student > Ph. D. Student 3 8%
Student > Doctoral Student 2 5%
Other 4 11%
Unknown 15 39%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 11 29%
Agricultural and Biological Sciences 5 13%
Environmental Science 2 5%
Computer Science 1 3%
Psychology 1 3%
Other 2 5%
Unknown 16 42%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 April 2018.
All research outputs
#16,099,609
of 23,881,329 outputs
Outputs from BMC Plant Biology
#1,516
of 3,322 outputs
Outputs of similar age
#213,320
of 331,198 outputs
Outputs of similar age from BMC Plant Biology
#15
of 37 outputs
Altmetric has tracked 23,881,329 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,322 research outputs from this source. They receive a mean Attention Score of 3.0. This one is in the 40th percentile – i.e., 40% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 331,198 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 26th percentile – i.e., 26% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 37 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 51% of its contemporaries.