↓ Skip to main content

Comparison of Methods of Detection of Exceptional Sequences in Prokaryotic Genomes

Overview of attention for article published in Biochemistry, February 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
5 Dimensions

Readers on

mendeley
5 Mendeley
Title
Comparison of Methods of Detection of Exceptional Sequences in Prokaryotic Genomes
Published in
Biochemistry, February 2018
DOI 10.1134/s0006297918020050
Pubmed ID
Authors

I. S. Rusinov, A. S. Ershova, A. S. Karyagina, S. A. Spirin, A. V. Alexeevski

Abstract

Many proteins need recognition of specific DNA sequences for functioning. The number of recognition sites and their distribution along the DNA might be of biological importance. For example, the number of restriction sites is often reduced in prokaryotic and phage genomes to decrease the probability of DNA cleavage by restriction endonucleases. We call a sequence an exceptional one if its frequency in a genome significantly differs from one predicted by some mathematical model. An exceptional sequence could be either under- or over-represented, depending on its frequency in comparison with the predicted one. Exceptional sequences could be considered biologically meaningful, for example, as targets of DNA-binding proteins or as parts of abundant repetitive elements. Several methods to predict frequency of a short sequence in a genome, based on actual frequencies of certain its subsequences, are used. The most popular are methods based on Markov chain models. But any rigorous comparison of the methods has not previously been performed. We compared three methods for the prediction of short sequence frequencies: the maximum-order Markov chain model-based method, the method that uses geometric mean of extended Markovian estimates, and the method that utilizes frequencies of all subsequences including discontiguous ones. We applied them to restriction sites in complete genomes of 2500 prokaryotic species and demonstrated that the results depend greatly on the method used: lists of 5% of the most under-represented sites differed by up to 50%. The method designed by Burge and coauthors in 1992, which utilizes all subsequences of the sequence, showed a higher precision than the other two methods both on prokaryotic genomes and randomly generated sequences after computational imitation of selective pressure. We propose this method as the first choice for detection of exceptional sequences in prokaryotic genomes.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 5 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 5 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 2 40%
Student > Ph. D. Student 2 40%
Professor 1 20%
Readers by discipline Count As %
Agricultural and Biological Sciences 2 40%
Biochemistry, Genetics and Molecular Biology 1 20%
Medicine and Dentistry 1 20%
Engineering 1 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 April 2018.
All research outputs
#22,834,739
of 25,461,852 outputs
Outputs from Biochemistry
#21,478
of 22,316 outputs
Outputs of similar age
#304,688
of 344,064 outputs
Outputs of similar age from Biochemistry
#162
of 194 outputs
Altmetric has tracked 25,461,852 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 22,316 research outputs from this source. They receive a mean Attention Score of 4.4. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 344,064 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 194 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.