↓ Skip to main content

Mapping human pluripotent stem cell differentiation pathways using high throughput single-cell RNA-sequencing

Overview of attention for article published in Genome Biology, April 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (90th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (61st percentile)

Mentioned by

blogs
1 blog
twitter
30 X users
wikipedia
1 Wikipedia page

Citations

dimensions_citation
86 Dimensions

Readers on

mendeley
266 Mendeley
citeulike
1 CiteULike
Title
Mapping human pluripotent stem cell differentiation pathways using high throughput single-cell RNA-sequencing
Published in
Genome Biology, April 2018
DOI 10.1186/s13059-018-1426-0
Pubmed ID
Authors

Xiaoping Han, Haide Chen, Daosheng Huang, Huidong Chen, Lijiang Fei, Chen Cheng, He Huang, Guo-Cheng Yuan, Guoji Guo

Abstract

Human pluripotent stem cells (hPSCs) provide powerful models for studying cellular differentiations and unlimited sources of cells for regenerative medicine. However, a comprehensive single-cell level differentiation roadmap for hPSCs has not been achieved. We use high throughput single-cell RNA-sequencing (scRNA-seq), based on optimized microfluidic circuits, to profile early differentiation lineages in the human embryoid body system. We present a cellular-state landscape for hPSC early differentiation that covers multiple cellular lineages, including neural, muscle, endothelial, stromal, liver, and epithelial cells. Through pseudotime analysis, we construct the developmental trajectories of these progenitor cells and reveal the gene expression dynamics in the process of cell differentiation. We further reprogram primed H9 cells into naïve-like H9 cells to study the cellular-state transition process. We find that genes related to hemogenic endothelium development are enriched in naïve-like H9. Functionally, naïve-like H9 show higher potency for differentiation into hematopoietic lineages than primed cells. Our single-cell analysis reveals the cellular-state landscape of hPSC early differentiation, offering new insights that can be harnessed for optimization of differentiation protocols.

X Demographics

X Demographics

The data shown below were collected from the profiles of 30 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 266 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 266 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 62 23%
Researcher 53 20%
Student > Bachelor 33 12%
Student > Master 20 8%
Student > Doctoral Student 17 6%
Other 28 11%
Unknown 53 20%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 97 36%
Agricultural and Biological Sciences 47 18%
Medicine and Dentistry 17 6%
Engineering 15 6%
Neuroscience 9 3%
Other 18 7%
Unknown 63 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 25. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 February 2020.
All research outputs
#1,510,095
of 25,382,440 outputs
Outputs from Genome Biology
#1,214
of 4,468 outputs
Outputs of similar age
#32,678
of 343,387 outputs
Outputs of similar age from Genome Biology
#13
of 34 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 94th percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 4,468 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 27.6. This one has gotten more attention than average, scoring higher than 72% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 343,387 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 90% of its contemporaries.
We're also able to compare this research output to 34 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 61% of its contemporaries.