↓ Skip to main content

A re-evaluation of the premaxillary bone in humans

Overview of attention for article published in Brain Structure and Function, February 2004
Altmetric Badge

Mentioned by

wikipedia
3 Wikipedia pages

Citations

dimensions_citation
55 Dimensions

Readers on

mendeley
47 Mendeley
Title
A re-evaluation of the premaxillary bone in humans
Published in
Brain Structure and Function, February 2004
DOI 10.1007/s00429-003-0366-x
Pubmed ID
Authors

K. Barteczko, M. Jacob

Abstract

The discovery of the premaxillary bone (os incisivum, os intermaxillare or premaxilla) in humans has been attributed to Goethe, and it has also been named os Goethei. However, Broussonet (1779) and Vicq d'Azyr (1780) came to the same result with different methods. The first anatomists described this medial part of the upper jaw as a separate bone in the vertebrate skull, and, as we know, Coiter (1573) was the first to present an illustration of the sutura incisiva in the human. This fact, and furthermore its development from three parts:-(1) the alveolar part with the facial process, (2) the palatine process, and (3) the processus Stenonianus-can no longer be found in modern textbooks of developmental biology. At the end of the nineteenth and in the early twentieth century a vehement discussion focused on the number and position of its ossification centers and its sutures. Therefore, it is hard to believe that the elaborate work of the old embryologists is ignored and that the existence of a premaxillary bone in humans is even denied by many authors. Therefore this re-evaluation was done to demonstrate the early development of the premaxillary bone using the reconstructions of Felber (1919), Jarmer (1922) and data from our own observations on SEM micrographs and serial sections from 16 mm embryo to 68 mm fetus. Ossification of a separate premaxilla was first observed in a 16 mm embryo. We agree with Jarmer (1922), Peter (1924), and Shepherd and McCarthy (1955) that it develops from three anlagen, which are, however, not fully separated. The predominant sutura incisiva (rudimentarily seen on the facial side in a prematurely born child) and a shorter sutura intraincisiva argue in this sense. The later growth of this bone and its processes establish an important structure in the middle of the facial skull. Its architecture fits well with the functional test of others. We also focused on the relation of the developing premaxilla to the forming nasal septum moving from ventral to dorsal and the intercalation of the vomer. Thus the premaxilla acts as a stabilizing element within the facial skeleton comparable with the keystone of a Roman arch. Furthermore, the significance of the premaxillary anlage for the closure of the palatine was documented by a synopsis made from a stage 16, 10.2 mm GL embryo to a 49 mm GL fetus. Finally the growth of the premaxilla is closely related to the development of the human face. Abnormal growth may be correlated to characteristic malformations such as protrusion, closed bite and prognathism. Concerning the relation of the premaxillary bone to cleft lip and palate we agree with others that the position of the clefts is not always identical with the incisive suture. This is proved by the double anlagen of an upper-outer incisor in a 55 mm fetus and an adult.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 47 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Portugal 1 2%
Brazil 1 2%
Czechia 1 2%
Canada 1 2%
United States 1 2%
Unknown 42 89%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 17%
Researcher 8 17%
Professor > Associate Professor 7 15%
Student > Bachelor 3 6%
Other 3 6%
Other 9 19%
Unknown 9 19%
Readers by discipline Count As %
Medicine and Dentistry 13 28%
Agricultural and Biological Sciences 12 26%
Earth and Planetary Sciences 3 6%
Arts and Humanities 2 4%
Unspecified 1 2%
Other 4 9%
Unknown 12 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 January 2022.
All research outputs
#8,534,976
of 25,374,647 outputs
Outputs from Brain Structure and Function
#675
of 2,021 outputs
Outputs of similar age
#37,535
of 146,559 outputs
Outputs of similar age from Brain Structure and Function
#1
of 4 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. This one is in the 43rd percentile – i.e., 43% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,021 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.8. This one has gotten more attention than average, scoring higher than 55% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 146,559 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 15th percentile – i.e., 15% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 4 others from the same source and published within six weeks on either side of this one. This one has scored higher than all of them