↓ Skip to main content

Structural and mechanistic aspects influencing the ADAM10-mediated shedding of the prion protein

Overview of attention for article published in Molecular Neurodegeneration, April 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (86th percentile)
  • Good Attention Score compared to outputs of the same age and source (77th percentile)

Mentioned by

news
1 news outlet
blogs
1 blog
twitter
3 X users

Citations

dimensions_citation
45 Dimensions

Readers on

mendeley
46 Mendeley
Title
Structural and mechanistic aspects influencing the ADAM10-mediated shedding of the prion protein
Published in
Molecular Neurodegeneration, April 2018
DOI 10.1186/s13024-018-0248-6
Pubmed ID
Authors

Luise Linsenmeier, Behnam Mohammadi, Sebastian Wetzel, Berta Puig, Walker S. Jackson, Alexander Hartmann, Keiji Uchiyama, Suehiro Sakaguchi, Kristina Endres, Jörg Tatzelt, Paul Saftig, Markus Glatzel, Hermann C. Altmeppen

Abstract

Proteolytic processing of the prion protein (PrP<superscript>C</superscript>) by endogenous proteases generates bioactive membrane-bound and soluble fragments which may help to explain the pleiotropic roles of this protein in the nervous system and in brain diseases. Shedding of almost full-length PrP<superscript>C</superscript> into the extracellular space by the metalloprotease ADAM10 is of peculiar relevance since soluble PrP stimulates axonal outgrowth and is protective in neurodegenerative conditions such as Alzheimer’s and prion disease. However, molecular determinates and mechanisms regulating the shedding of PrP are entirely unknown. We produced an antibody recognizing the neo-epitope of shed PrP generated by ADAM10 in biological samples and used it to study structural and mechanistic aspects affecting the shedding. For this, we investigated genetically modified cellular and murine models by biochemical and morphological approaches. We show that the novel antibody specifically detects shed PrP in cell culture supernatants and murine brain. We demonstrate that ADAM10 is the exclusive sheddase of PrP<superscript>C</superscript> in the nervous system and reveal that the glycosylation state and type of membrane-anchorage of PrP<superscript>C</superscript> severely affect its shedding. Furthermore, we provide evidence that PrP shedding can be modulated by pharmacological inhibition and stimulation and present data suggesting that shedding is a relevant part of a compensatory network ensuring PrP<superscript>C</superscript> homeostasis of the cell. With the new antibody, our study introduces a new tool to reliably investigate PrP-shedding. In addition, this study provides novel and important insight into the regulation of this cleavage event, which is likely to be relevant for diagnostic and therapeutic approaches even beyond neurodegeneration.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 46 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 46 100%

Demographic breakdown

Readers by professional status Count As %
Student > Doctoral Student 10 22%
Student > Ph. D. Student 6 13%
Researcher 6 13%
Student > Bachelor 6 13%
Student > Postgraduate 3 7%
Other 8 17%
Unknown 7 15%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 13 28%
Agricultural and Biological Sciences 7 15%
Neuroscience 6 13%
Medicine and Dentistry 4 9%
Immunology and Microbiology 2 4%
Other 7 15%
Unknown 7 15%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 16. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 May 2019.
All research outputs
#1,948,868
of 23,041,514 outputs
Outputs from Molecular Neurodegeneration
#194
of 857 outputs
Outputs of similar age
#44,693
of 329,529 outputs
Outputs of similar age from Molecular Neurodegeneration
#4
of 18 outputs
Altmetric has tracked 23,041,514 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 91st percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 857 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 14.3. This one has done well, scoring higher than 77% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 329,529 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 86% of its contemporaries.
We're also able to compare this research output to 18 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 77% of its contemporaries.