↓ Skip to main content

Discovery of a small-molecule inhibitor of Dvl–CXXC5 interaction by computational approaches

Overview of attention for article published in Perspectives in Drug Discovery and Design, April 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
11 Dimensions

Readers on

mendeley
23 Mendeley
Title
Discovery of a small-molecule inhibitor of Dvl–CXXC5 interaction by computational approaches
Published in
Perspectives in Drug Discovery and Design, April 2018
DOI 10.1007/s10822-018-0118-x
Pubmed ID
Authors

Songling Ma, Jiwon Choi, Xuemei Jin, Hyun-Yi Kim, Ji-Hye Yun, Weontae Lee, Kang-Yell Choi, Kyoung Tai No

Abstract

The Wnt/β-catenin signaling pathway plays a significant role in the control of osteoblastogenesis and bone formation. CXXC finger protein 5 (CXXC5) has been recently identified as a negative feedback regulator of osteoblast differentiation through a specific interaction with Dishevelled (Dvl) protein. It was reported that targeting the Dvl-CXXC5 interaction could be a novel anabolic therapeutic target for osteoporosis. In this study, complex structure of Dvl PDZ domain and CXXC5 peptide was simulated with molecular dynamics (MD). Based on the structural analysis of binding modes of MD-simulated Dvl PDZ domain with CXXC5 peptide and crystal Dvl PDZ domain with synthetic peptide-ligands, we generated two different pharmacophore models and applied pharmacophore-based virtual screening to discover potent inhibitors of the Dvl-CXXC5 interaction for the anabolic therapy of osteoporosis. Analysis of 16 compounds selected by means of a virtual screening protocol yielded four compounds that effectively disrupted the Dvl-CXXC5 interaction in the fluorescence polarization assay. Potential compounds were validated by fluorescence spectroscopy and nuclear magnetic resonance. We successfully identified a highly potent inhibitor, BMD4722, which directly binds to the Dvl PDZ domain and disrupts the Dvl-CXXC5 interaction. Overall, CXXC5-Dvl PDZ domain complex based pharmacophore combined with various traditional and simple computational methods is a promising approach for the development of modulators targeting the Dvl-CXXC5 interaction, and the potent inhibitor BMD4722 could serve as a starting point to discover or design more potent and specific the Dvl-CXXC5 interaction disruptors.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 23 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 23 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 6 26%
Student > Doctoral Student 3 13%
Student > Ph. D. Student 3 13%
Professor 2 9%
Student > Master 2 9%
Other 2 9%
Unknown 5 22%
Readers by discipline Count As %
Chemistry 8 35%
Medicine and Dentistry 3 13%
Biochemistry, Genetics and Molecular Biology 2 9%
Pharmacology, Toxicology and Pharmaceutical Science 2 9%
Immunology and Microbiology 1 4%
Other 3 13%
Unknown 4 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 April 2018.
All research outputs
#20,014,336
of 25,461,852 outputs
Outputs from Perspectives in Drug Discovery and Design
#807
of 949 outputs
Outputs of similar age
#252,371
of 343,540 outputs
Outputs of similar age from Perspectives in Drug Discovery and Design
#3
of 5 outputs
Altmetric has tracked 25,461,852 research outputs across all sources so far. This one is in the 18th percentile – i.e., 18% of other outputs scored the same or lower than it.
So far Altmetric has tracked 949 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.3. This one is in the 14th percentile – i.e., 14% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 343,540 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 21st percentile – i.e., 21% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 5 others from the same source and published within six weeks on either side of this one. This one has scored higher than 2 of them.