↓ Skip to main content

Role of reactive nitrogen and reactive oxygen species against MPTP neurotoxicity in mice

Overview of attention for article published in Journal of Neural Transmission, January 2008
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (88th percentile)
  • High Attention Score compared to outputs of the same age and source (93rd percentile)

Mentioned by

blogs
1 blog
wikipedia
2 Wikipedia pages

Citations

dimensions_citation
49 Dimensions

Readers on

mendeley
28 Mendeley
Title
Role of reactive nitrogen and reactive oxygen species against MPTP neurotoxicity in mice
Published in
Journal of Neural Transmission, January 2008
DOI 10.1007/s00702-008-0019-6
Pubmed ID
Authors

Hironori Yokoyama, Sho Takagi, Yu Watanabe, Hiroyuki Kato, Tsutomu Araki

Abstract

There is growing evidence indicating that reactive nitrogen species (RNS) and reactive oxygen species (ROS) are a major contributor to the pathogenesis and progression of Parkinson's disease. Here we investigated whether edaravone (free radical scavenger), minocycline (inducible nitric oxide synthase, iNOS inhibitor), 7-nitroindazole (neuronal NOS, nNOS inhibitor), fluvastatin (endothelial NOS, eNOS activator) and pitavastatin (eNOS activator) can protect against MPTP neurotoxicity in mice under the same condition. The present study showed that 7-nitroindazole could protect dose-dependently against the striatal dopamine depletions in mice 5 days after MPTP treatment. In contrast, edaravone, minocycline, fluvastatin and pitavastatin did not show the neuroprotective effect on MPTP-induced striatal dopamine depletion. Our immunohistochemical study showed that TH (tyrosine hydroxylase) and DAT (dopamine transporter) immunoreactivity was decreased significantly in the striatum and substantia nigra 5 days after MPTP treatment. The administration of 7-nitroindazole showed a protective effect against the severe reductions in levels of TH and DAT immunoreactivity in the striatum and substantia nigra 5 days after MPTP treatment. Furthermore, our Western blot analyses study showed the remarkable loss of TH protein levels in the striatum 5 days after MPTP treatment. In contrast, 7-nitroindazole prevented a significant loss in TH protein levels in the striatum 5 days after MPTP treatment. On the other hand, GFAP (glial fibrillary acidic protein) immunoreactivity increased significantly in the striatum and substantia nigra, 5 days after MPTP treatment. 7-Nitroindazole ameliorated severe increases in number of GFAP immunoreactive astrocytes in the striatum and substantia nigra 5 days after MPTP treatment. Furthermore, our Western blot analyses study showed the increase of GFAP protein levels in the striatum 5 days after MPTP treatment. 7-Nitroindazole prevented a significant increase in the GFAP protein levels in the striatum 5 days after MPTP treatment. The present results indicate that 7-nitroindazole can protect dose-dependently against the striatal dopamine depletions in mice 5 days after MPTP treatment. In contrast, edaravone, minocycline, fluvastatin and pitavastatin did not show the neuroprotective effect on MPTP-induced striatal dopamine depletions. These findings demonstrate that the overexpression of nNOS may play a major role in the neurotoxic processes of MPTP, as compared to the production of ROS, the overexpression of iNOS and the modulation of eNOS. Thus, our findings provide strong evidence for neuroprotective properties of nNOS inhibitor in this animal model of Parkinson's disease.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 28 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 4%
China 1 4%
Brazil 1 4%
Unknown 25 89%

Demographic breakdown

Readers by professional status Count As %
Researcher 7 25%
Student > Ph. D. Student 5 18%
Student > Bachelor 3 11%
Professor > Associate Professor 2 7%
Lecturer 1 4%
Other 3 11%
Unknown 7 25%
Readers by discipline Count As %
Agricultural and Biological Sciences 11 39%
Medicine and Dentistry 4 14%
Neuroscience 4 14%
Pharmacology, Toxicology and Pharmaceutical Science 2 7%
Unknown 7 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 9. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 May 2017.
All research outputs
#3,732,312
of 22,789,566 outputs
Outputs from Journal of Neural Transmission
#298
of 1,764 outputs
Outputs of similar age
#18,162
of 156,629 outputs
Outputs of similar age from Journal of Neural Transmission
#1
of 16 outputs
Altmetric has tracked 22,789,566 research outputs across all sources so far. Compared to these this one has done well and is in the 83rd percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,764 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.5. This one has done well, scoring higher than 82% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 156,629 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 88% of its contemporaries.
We're also able to compare this research output to 16 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 93% of its contemporaries.