↓ Skip to main content

INSL4 Pseudogenes Help Define the Relaxin Family Repertoire in the Common Ancestor of Placental Mammals

Overview of attention for article published in Journal of Molecular Evolution, September 2012
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Good Attention Score compared to outputs of the same age and source (66th percentile)

Mentioned by

wikipedia
1 Wikipedia page

Citations

dimensions_citation
12 Dimensions

Readers on

mendeley
14 Mendeley
Title
INSL4 Pseudogenes Help Define the Relaxin Family Repertoire in the Common Ancestor of Placental Mammals
Published in
Journal of Molecular Evolution, September 2012
DOI 10.1007/s00239-012-9517-0
Pubmed ID
Authors

José Ignacio Arroyo, Federico G. Hoffmann, Sara Good, Juan C. Opazo

Abstract

The relaxin/insulin-like (RLN/INSL) gene family comprises a group of signaling molecules that perform physiological roles related mostly to reproduction and neuroendocrine regulation. They are found on three different locations in the mammalian genome, which have been called relaxin family locus (RFL) A, B, and C. Early in placental mammalian evolution, the ancestral proto-RLN gene at the RFLB locus underwent successive rounds of small-scale duplications resulting in variable number of paralogous genes in different placental lineages. Most placental mammals harbor copies of the RLN2 and INSL6 paralogs in the RFLB. However, the origin of an additional paralog, INSL4 (also known as placentin), has been controversial as its phyletic distribution does not converge with its phylogenetic position. In principle, by searching for INSL4 genes in representative species of all major groups of mammals we can gain insights into when the gene originated and better reconstruct its evolutionary history. Here we identified INSL4 pseudogenes in two laurasiatherian, (alpaca and dolphin) and one xenarthran (armadillo) species. Phylogenetic and synteny analyses confirmed that the identified pseudogenes are orthologs of INSL4. According to these results, the proto-RLN gene in the RFLB underwent two successive tandem duplications which gave rise the INSL6 and INSL4 paralogs in the last common ancestor of placental mammals. The INSL4 gene was subsequently inactivated or lost from the genome in all placentals other than catarrhine primates, where its product became functionally relevant. Our results highlight the contribution of relatively old gene duplicates to the gene complement of extant species.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 14 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 14 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 29%
Professor 4 29%
Professor > Associate Professor 2 14%
Other 1 7%
Student > Master 1 7%
Other 1 7%
Unknown 1 7%
Readers by discipline Count As %
Agricultural and Biological Sciences 5 36%
Biochemistry, Genetics and Molecular Biology 5 36%
Environmental Science 1 7%
Computer Science 1 7%
Medicine and Dentistry 1 7%
Other 0 0%
Unknown 1 7%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 October 2012.
All research outputs
#7,454,951
of 22,790,780 outputs
Outputs from Journal of Molecular Evolution
#450
of 1,438 outputs
Outputs of similar age
#55,888
of 168,911 outputs
Outputs of similar age from Journal of Molecular Evolution
#1
of 6 outputs
Altmetric has tracked 22,790,780 research outputs across all sources so far. This one is in the 44th percentile – i.e., 44% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,438 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.2. This one is in the 29th percentile – i.e., 29% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 168,911 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 48th percentile – i.e., 48% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 6 others from the same source and published within six weeks on either side of this one. This one has scored higher than all of them