↓ Skip to main content

Changes in maize transcriptome in response to maize Iranian mosaic virus infection

Overview of attention for article published in PLOS ONE, April 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
16 Dimensions

Readers on

mendeley
34 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Changes in maize transcriptome in response to maize Iranian mosaic virus infection
Published in
PLOS ONE, April 2018
DOI 10.1371/journal.pone.0194592
Pubmed ID
Authors

Abozar Ghorbani, Keramatollah Izadpanah, Ralf G. Dietzgen

Abstract

Maize Iranian mosaic virus (MIMV, genus Nucleorhabdovirus, family Rhabdoviridae) causes an economically important disease in maize and other gramineous crops in Iran. MIMV negative-sense RNA genome sequence of 12,426 nucleotides has recently been completed. Maize Genetics and Genomics database shows that 39,498 coding genes and 4,976 non-coding genes of maize have been determined, but still some transcripts could not be annotated. The molecular host cell responses of maize to MIMV infection including differential gene expression have so far not been elucidated. Complementary DNA libraries were prepared from total RNA of MIMV-infected and mock-inoculated maize leaves and sequenced using Illumina HiSeq 2500. Cleaned raw transcript reads from MIMV-infected maize were mapped to reads from uninfected maize and to a maize reference genome. Differentially expressed transcripts were characterized by gene ontology and biochemical pathway analyses. Transcriptome data for selected genes were validated by real-time quantitative PCR. Approximately 42 million clean reads for each treatment were obtained. In MIMV-infected maize compared to uninfected plants, 1689 transcripts were up-regulated and 213 transcripts were down-regulated. In response to MIMV infection, several pathways were activated in maize including immune receptor signaling, metabolic pathways, RNA silencing, hormone-mediated pathways, protein degradation, protein kinase and ATP binding activity, and fatty acid metabolism. Also, several transcripts including those encoding hydrophobic protein RCI2B, adenosylmethionine decarboxylase NAC transcription factor and nucleic acid binding, leucine-rich repeat, heat shock protein, 26S proteasome, oxidoreductases and endonuclease activity protein were up-regulated. These data will contribute to the identification of genes and pathways involved in plant-virus interactions that may serve as future targets for improved disease control.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 34 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 34 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 7 21%
Student > Ph. D. Student 7 21%
Student > Bachelor 3 9%
Student > Master 3 9%
Other 1 3%
Other 3 9%
Unknown 10 29%
Readers by discipline Count As %
Agricultural and Biological Sciences 14 41%
Biochemistry, Genetics and Molecular Biology 5 15%
Veterinary Science and Veterinary Medicine 1 3%
Medicine and Dentistry 1 3%
Engineering 1 3%
Other 0 0%
Unknown 12 35%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 April 2018.
All research outputs
#14,103,984
of 23,041,514 outputs
Outputs from PLOS ONE
#114,468
of 196,494 outputs
Outputs of similar age
#180,175
of 329,244 outputs
Outputs of similar age from PLOS ONE
#1,914
of 3,438 outputs
Altmetric has tracked 23,041,514 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 196,494 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 15.2. This one is in the 40th percentile – i.e., 40% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 329,244 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 3,438 others from the same source and published within six weeks on either side of this one. This one is in the 42nd percentile – i.e., 42% of its contemporaries scored the same or lower than it.