↓ Skip to main content

The Role of 3-O-Methyldopa in the Side Effects of l-dopa

Overview of attention for article published in Neurochemical Research, August 2007
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (71st percentile)
  • Good Attention Score compared to outputs of the same age and source (70th percentile)

Mentioned by

patent
2 patents
wikipedia
1 Wikipedia page

Citations

dimensions_citation
43 Dimensions

Readers on

mendeley
45 Mendeley
Title
The Role of 3-O-Methyldopa in the Side Effects of l-dopa
Published in
Neurochemical Research, August 2007
DOI 10.1007/s11064-007-9442-6
Pubmed ID
Authors

Eun-Sook Y. Lee, Hongtao Chen, Jennifer King, Clivel Charlton

Abstract

Long-term treatment of L-dopa for Parkinson's disease (PD) patients induces adverse effects, including dyskinesia, on-off and wearing-off symptoms. However, the cause of these side effects has not been established to date. In the present study, therefore, 3-O-methyldopa (3-OMD), which is a major metabolite of L-dopa, was tested to determine whether it plays a role in the aforementioned adverse effects. The effects of 3-OMD on the dopaminergic nervous system in the brain were investigated, by examining behavioral, biochemical, and cellular changes in male Sprague-Dawley rats and catecholamine-producing PC12 neuronal cells. The results revealed that the intracerebroventricular (icv) injection of 1 micromol of 3-OMD impaired locomotor activities by decreasing movement time (MT), total distance (TD), and the number of movement (NM) by 70, 74 and 61%, respectively. The biochemical analysis results showed that a single administration of 1 micromole of 3-OMD decreased the dopamine turnover rate (DOPAC/DA) by 40.0% in the rat striatum. 3-OMD inhibited dopamine transporter and uptake in rat brain striatal membranes and PC12 cells. The subacute administration of 3-OMD (5 days, icv) also significantly impaired the locomotor activities and catecholamine levels. 3-OMD induced cytotoxic effects via oxidative stress and decreased mitochondrial membrane potential in PC12 cells, indicating that 3-OMD can damage neuronal cells. Furthermore, 3-OMD potentiated L-dopa toxicity and these toxic effects induced by both 3-OMD and L-dopa were blocked by vitamin E (alpha-tocopherol) in PC12 cells, indicating that 3-OMD may increase the toxic effects of L-dopa to some extent by oxidative stress. Therefore, the present study reveals that 3-OMD accumulation from long-term L-dopa treatment may be involved in the adverse effects of L-dopa therapy. Moreover, L-dopa treatment might accelerate the progression of PD, at least in part, by 3-OMD.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 45 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 45 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 7 16%
Student > Ph. D. Student 7 16%
Student > Master 7 16%
Student > Doctoral Student 3 7%
Other 2 4%
Other 5 11%
Unknown 14 31%
Readers by discipline Count As %
Agricultural and Biological Sciences 8 18%
Medicine and Dentistry 5 11%
Biochemistry, Genetics and Molecular Biology 4 9%
Chemistry 4 9%
Psychology 2 4%
Other 7 16%
Unknown 15 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 6. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 August 2021.
All research outputs
#4,697,128
of 22,790,780 outputs
Outputs from Neurochemical Research
#376
of 2,097 outputs
Outputs of similar age
#13,175
of 67,802 outputs
Outputs of similar age from Neurochemical Research
#2
of 10 outputs
Altmetric has tracked 22,790,780 research outputs across all sources so far. Compared to these this one has done well and is in the 76th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 2,097 research outputs from this source. They receive a mean Attention Score of 4.3. This one has done well, scoring higher than 78% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 67,802 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 71% of its contemporaries.
We're also able to compare this research output to 10 others from the same source and published within six weeks on either side of this one. This one has scored higher than 8 of them.