↓ Skip to main content

Quinoprotein ethanol dehydrogenase from Pseudomonas aeruginosa: the unusual disulfide ring formed by adjacent cysteine residues is essential for efficient electron transfer to cytochrome c 550

Overview of attention for article published in Archives of Microbiology, February 2009
Altmetric Badge

Mentioned by

wikipedia
4 Wikipedia pages

Citations

dimensions_citation
14 Dimensions

Readers on

mendeley
33 Mendeley
Title
Quinoprotein ethanol dehydrogenase from Pseudomonas aeruginosa: the unusual disulfide ring formed by adjacent cysteine residues is essential for efficient electron transfer to cytochrome c 550
Published in
Archives of Microbiology, February 2009
DOI 10.1007/s00203-009-0460-4
Pubmed ID
Authors

Bina Mennenga, Christopher W. M. Kay, Helmut Görisch

Abstract

All pyrroloquinoline quinone (PQQ)-dependent alcohol dehydrogenases contain an unusual disulfide ring formed between adjacent cysteine residues. A mutant enzyme that is lacking this structure was generated by replacing Cys105 and Cys106 with Ala in quinoprotein ethanol dehydrogenase (QEDH) from Pseudomonas aeruginosa ATCC17933. Heterologously expressed quinoprotein ethanol dehydrogenase in which Cys-105 and Cys-106 have been replaced by Ala (Cys105Ala/Cys106Ala apo-QEDH) was successfully converted to enzymatic active holo-enzyme by incorporation of its cofactor PQQ in the presence of Ca(2+). The enzymatic activity of the mutant enzyme in the artificial dye test with N-methylphenazonium methyl sulfate (PMS) and 2,6-dichlorophenol indophenol (DCPIP) at pH 9 did not depend on an activating amine which is essential for wild type activity under these conditions. The mutant enzyme showed increased Michaelis constants for primary alcohols, while the affinity for the secondary alcohol 2-propanol was unaltered. Surprisingly, for all substrates tested the specific activity of the mutant enzyme in the artificial dye test was higher than that found for wild type QEDH. On the contrary, in the ferricyanide test with the natural electron acceptor cytochrome c(550) the activity of mutant Cys105Ala/Cys106Ala was 15-fold lower than that of wild type QEDH. We demonstrate for the first time unambiguously that the unusual disulfide ring is essential for efficient electron transfer at pH 7 from QEDH to its natural electron acceptor cytochrome c(550).

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 33 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Argentina 1 3%
Unknown 32 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 21%
Student > Master 6 18%
Student > Doctoral Student 4 12%
Student > Bachelor 4 12%
Researcher 4 12%
Other 7 21%
Unknown 1 3%
Readers by discipline Count As %
Agricultural and Biological Sciences 15 45%
Biochemistry, Genetics and Molecular Biology 7 21%
Chemistry 4 12%
Environmental Science 2 6%
Unspecified 1 3%
Other 2 6%
Unknown 2 6%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 August 2014.
All research outputs
#7,454,951
of 22,792,160 outputs
Outputs from Archives of Microbiology
#568
of 2,770 outputs
Outputs of similar age
#33,042
of 94,089 outputs
Outputs of similar age from Archives of Microbiology
#1
of 2 outputs
Altmetric has tracked 22,792,160 research outputs across all sources so far. This one is in the 44th percentile – i.e., 44% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,770 research outputs from this source. They receive a mean Attention Score of 3.7. This one is in the 42nd percentile – i.e., 42% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 94,089 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 19th percentile – i.e., 19% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 2 others from the same source and published within six weeks on either side of this one. This one has scored higher than all of them