↓ Skip to main content

Uptake and accumulation of potentially toxic elements in colonized plant species around the world’s largest antimony mine area, China

Overview of attention for article published in Environmental Geochemistry and Health, April 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
11 Dimensions

Readers on

mendeley
15 Mendeley
Title
Uptake and accumulation of potentially toxic elements in colonized plant species around the world’s largest antimony mine area, China
Published in
Environmental Geochemistry and Health, April 2018
DOI 10.1007/s10653-018-0104-1
Pubmed ID
Authors

Jiumei Long, Di Tan, Sihan Deng, Ming Lei

Abstract

To provide information on reclamation of multi-heavy metal polluted soils with conception of phytostabilization, a field survey on the uptake and accumulation of potentially toxic elements such as antimony (Sb), arsenic (As), lead (Pb), cadmium (Cd), copper (Cu), and zinc (Zn) in colonized plant species around the world's largest antimony mine area, China, was conducted. Samples including leaves and shoots (including roots and stems) of colonized plants as well as rhizospheric soils were collected from eight sampling zones in the studied area. The results showed that the contents of Cu, Zn, and Pb in rhizospheric soils below plants were comparable to the corresponding background values of Hunan province, otherwise Sb, Cd, and As contents were extremely high (17-106, 17-87, and 3-7 times of the corresponding background values). The highest concentration of Sb was found in Aster subulatus (410 mg kg-1); Cd, As, and Zn were in Herba bidentis bipinnatae (10.9, 264, and 265 mg kg-1, respectively); and Cu was in Artemisia lavandulaefolia (27.1 mg kg-1). It also exhibited that all the contents of As in leaves were several times of those in shoots of plants, Cd and other heavy metals showed in a similar pattern in several studied species, implying that the uptake route of these heavy metals via foliar might contribute to the accumulation. With high bioconcentration factors of heavy metals (more than 1, except for Zn), together with the growth abundance, Herba bidentis bipinnatae was considered as the most suitable colonized species for phytostabilization of the multi-heavy metal pollution in soils on this antimony mine area.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 15 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 15 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 3 20%
Lecturer > Senior Lecturer 1 7%
Student > Doctoral Student 1 7%
Lecturer 1 7%
Student > Bachelor 1 7%
Other 1 7%
Unknown 7 47%
Readers by discipline Count As %
Environmental Science 5 33%
Pharmacology, Toxicology and Pharmaceutical Science 1 7%
Psychology 1 7%
Unknown 8 53%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 April 2018.
All research outputs
#19,382,126
of 23,854,458 outputs
Outputs from Environmental Geochemistry and Health
#640
of 856 outputs
Outputs of similar age
#260,021
of 332,275 outputs
Outputs of similar age from Environmental Geochemistry and Health
#8
of 9 outputs
Altmetric has tracked 23,854,458 research outputs across all sources so far. This one is in the 10th percentile – i.e., 10% of other outputs scored the same or lower than it.
So far Altmetric has tracked 856 research outputs from this source. They receive a mean Attention Score of 4.2. This one is in the 13th percentile – i.e., 13% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 332,275 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 11th percentile – i.e., 11% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 9 others from the same source and published within six weeks on either side of this one.