↓ Skip to main content

Highly cysteine-selective fluorescent nanoprobes based on ultrabright and directly synthesized carbon quantum dots

Overview of attention for article published in Analytical & Bioanalytical Chemistry, March 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
28 Dimensions

Readers on

mendeley
30 Mendeley
Title
Highly cysteine-selective fluorescent nanoprobes based on ultrabright and directly synthesized carbon quantum dots
Published in
Analytical & Bioanalytical Chemistry, March 2018
DOI 10.1007/s00216-018-0980-3
Pubmed ID
Authors

Xuejiao Chen, Fuchun Gong, Zhong Cao, Wu Zou, Tingting Gu

Abstract

Strongly green fluorescent carbon dots (CQDs) have been directly synthesized from 2,4-diaminophenylhydrazine and 2-hydroxy-5-methylisophthalaldehyde through a facile solvothermal method. The novel CQDs exhibit high fluorescence quantum yield and excellent water solubility due to the abundant amino and hydroxy groups on their surface. The use of the as-prepared CQDs combined with Cu2+ constructed a "turn-on" switch cysteine-responsive nanoprobe. In the CQDs-Cu2+ assemblies, the binding of Cu2+ to CQDs results in the fluorescence quenching of CQDs by electron transfer mechanism, while the addition of cysteine leads to the fluorescence recovery because of the competitive binding between cysteine and CQDs to Cu2+. The nanoprobes showed high sensitivity to cysteine with the detection limit of 2.6 nmol L-1. The selectivity investigation results demonstrated that the Cu2+-integrated nanoparticles were highly selective toward cysteine over the other amino acids and biologically related metal ions. The proposed nanoprobe was then employed for detecting the recovery of cysteine in rabbit serum and plasma samples and imaging the cysteine in cancer cells, and the recovery was found to be 98.2-104.0%. This "synthesis-modification integration" strategy for the fabrication of CQDs may offer a new sight for the preparation of multifunctional nanostructures and broadening the application of CQDs in bioimaging. Graphical abstract Fluorescent carbon dots (CQDs) were directly synthesized from 2,4-diaminophenylhydrazine and 2-hydroxy-5-methylisophthalaldehyde. CQDs exhibit high fluorescence quantum yield and excellent water solubility due to the abundant amino and hydroxy groups on their surface. The use of CQDs combined with Cu2+ constructed a cysteine-responsive nanoprobe, which showed high sensitivity to cysteine with the detection limit of 2.6 nM.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 30 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 30 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 7 23%
Student > Ph. D. Student 6 20%
Researcher 3 10%
Student > Bachelor 1 3%
Professor > Associate Professor 1 3%
Other 0 0%
Unknown 12 40%
Readers by discipline Count As %
Chemistry 8 27%
Engineering 3 10%
Materials Science 2 7%
Physics and Astronomy 1 3%
Chemical Engineering 1 3%
Other 2 7%
Unknown 13 43%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 April 2018.
All research outputs
#22,767,715
of 25,382,440 outputs
Outputs from Analytical & Bioanalytical Chemistry
#7,543
of 9,619 outputs
Outputs of similar age
#308,430
of 348,822 outputs
Outputs of similar age from Analytical & Bioanalytical Chemistry
#155
of 206 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 9,619 research outputs from this source. They receive a mean Attention Score of 3.1. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 348,822 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 206 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.