↓ Skip to main content

Biomimetic trapping cocktail to screen reactive metabolites: use of an amino acid and DNA motif mixture as light/heavy isotope pairs differing in mass shift

Overview of attention for article published in Analytical & Bioanalytical Chemistry, April 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (53rd percentile)

Mentioned by

twitter
4 X users

Citations

dimensions_citation
2 Dimensions

Readers on

mendeley
9 Mendeley
Title
Biomimetic trapping cocktail to screen reactive metabolites: use of an amino acid and DNA motif mixture as light/heavy isotope pairs differing in mass shift
Published in
Analytical & Bioanalytical Chemistry, April 2018
DOI 10.1007/s00216-018-1057-z
Pubmed ID
Authors

Shuto Hosaka, Takuto Honda, Seon Hwa Lee, Tomoyuki Oe

Abstract

Candidate drugs that can be metabolically transformed into reactive electrophilic products, such as epoxides, quinones, and nitroso compounds, are of special concern because subsequent covalent binding to bio-macromolecules can cause adverse drug reactions, such as allergic reactions, hepatotoxicity, and genotoxicity. Several strategies have been reported for screening reactive metabolites, such as a covalent binding assay with radioisotope-labeled drugs and a trapping method followed by LC-MS/MS analyses. Of these, a trapping method using glutathione is the most common, especially at the early stage of drug development. However, the cysteine of glutathione is not the only nucleophilic site in vivo; lysine, histidine, arginine, and DNA bases are also nucleophilic. Indeed, the glutathione trapping method tends to overlook several types of reactive metabolites, such as aldehydes, acylglucuronides, and nitroso compounds. Here, we introduce an alternate way for screening reactive metabolites as follows: A mixture of the light and heavy isotopes of simplified amino acid motifs and a DNA motif is used as a biomimetic trapping cocktail. This mixture consists of [2H0]/[2H3]-1-methylguanidine (arginine motif, Δ 3 Da), [2H0]/[2H4]-2-mercaptoethanol (cysteine motif, Δ 4 Da), [2H0]/[2H5]-4-methylimidazole (histidine motif, Δ 5 Da), [2H0]/[2H9]-n-butylamine (lysine motif, Δ 9 Da), and [13C0,15N0]/[13C1,15N2]-2'-deoxyguanosine (DNA motif, Δ 3 Da). Mass tag triggered data-dependent acquisition is used to find the characteristic doublet peaks, followed by specific identification of the light isotope peak using MS/MS. Forty-two model drugs were examined using an in vitro microsome experiment to validate the strategy. Graphical abstract Biomimetic trapping cocktail to screen reactive metabolites.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 9 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 9 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 3 33%
Student > Ph. D. Student 1 11%
Student > Postgraduate 1 11%
Professor > Associate Professor 1 11%
Unknown 3 33%
Readers by discipline Count As %
Pharmacology, Toxicology and Pharmaceutical Science 3 33%
Medicine and Dentistry 2 22%
Chemistry 1 11%
Unknown 3 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 May 2018.
All research outputs
#16,728,456
of 25,382,440 outputs
Outputs from Analytical & Bioanalytical Chemistry
#5,260
of 9,619 outputs
Outputs of similar age
#209,447
of 341,757 outputs
Outputs of similar age from Analytical & Bioanalytical Chemistry
#75
of 177 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 9,619 research outputs from this source. They receive a mean Attention Score of 3.1. This one is in the 41st percentile – i.e., 41% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 341,757 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 35th percentile – i.e., 35% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 177 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 53% of its contemporaries.