↓ Skip to main content

Correcting “confusability regions” in face morphs

Overview of attention for article published in Behavior Research Methods, April 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (75th percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

blogs
1 blog
twitter
2 X users

Citations

dimensions_citation
4 Dimensions

Readers on

mendeley
12 Mendeley
Title
Correcting “confusability regions” in face morphs
Published in
Behavior Research Methods, April 2018
DOI 10.3758/s13428-018-1039-2
Pubmed ID
Authors

Emma ZeeAbrahamsen, Jason Haberman

Abstract

The visual system represents summary statistical information from a set of similar items, a phenomenon known as ensemble perception. In exploring various ensemble domains (e.g., orientation, color, facial expression), researchers have often employed the method of continuous report, in which observers select their responses from a gradually changing morph sequence. However, given their current implementation, some face morphs unintentionally introduce noise into the ensemble measurement. Specifically, some facial expressions on the morph wheel appear perceptually similar even though they are far apart in stimulus space. For instance, in a morph wheel of happy-sad-angry-happy expressions, an expression between happy and sad may not be discriminable from an expression between sad and angry. Without accounting for this confusability, observer ability will be underestimated. In the present experiments we accounted for this by delineating the perceptual confusability of morphs of multiple expressions. In a two-alternative forced choice task, eight observers were asked to discriminate between anchor images (36 in total) and all 360 facial expressions on the morph wheel. The results were visualized on a "confusability matrix," depicting the morphs most likely to be confused for one another. The matrix revealed multiple confusable images between distant expressions on the morph wheel. By accounting for these "confusability regions," we demonstrated a significant improvement in performance estimation on a set of independent ensemble data, suggesting that high-level ensemble abilities may be better than has been previously thought. We also provide an alternative computational approach that may be used to determine potentially confusable stimuli in a given morph space.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 12 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 12 100%

Demographic breakdown

Readers by professional status Count As %
Student > Doctoral Student 2 17%
Student > Master 2 17%
Student > Bachelor 2 17%
Lecturer > Senior Lecturer 1 8%
Other 1 8%
Other 2 17%
Unknown 2 17%
Readers by discipline Count As %
Psychology 6 50%
Business, Management and Accounting 1 8%
Social Sciences 1 8%
Neuroscience 1 8%
Unknown 3 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 8. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 August 2018.
All research outputs
#4,549,873
of 25,382,440 outputs
Outputs from Behavior Research Methods
#567
of 2,526 outputs
Outputs of similar age
#82,242
of 342,076 outputs
Outputs of similar age from Behavior Research Methods
#12
of 27 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. Compared to these this one has done well and is in the 82nd percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 2,526 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.2. This one has done well, scoring higher than 76% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 342,076 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 75% of its contemporaries.
We're also able to compare this research output to 27 others from the same source and published within six weeks on either side of this one. This one is in the 48th percentile – i.e., 48% of its contemporaries scored the same or lower than it.