↓ Skip to main content

Metabolic fate, mass spectral fragmentation, detectability, and differentiation in urine of the benzofuran designer drugs 6-APB and 6-MAPB in comparison to their 5-isomers using GC-MS and LC-(HR)-MSn…

Overview of attention for article published in Analytical & Bioanalytical Chemistry, February 2015
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (65th percentile)
  • Good Attention Score compared to outputs of the same age and source (77th percentile)

Mentioned by

wikipedia
1 Wikipedia page
reddit
1 Redditor

Citations

dimensions_citation
22 Dimensions

Readers on

mendeley
46 Mendeley
Title
Metabolic fate, mass spectral fragmentation, detectability, and differentiation in urine of the benzofuran designer drugs 6-APB and 6-MAPB in comparison to their 5-isomers using GC-MS and LC-(HR)-MSn techniques
Published in
Analytical & Bioanalytical Chemistry, February 2015
DOI 10.1007/s00216-015-8552-2
Pubmed ID
Authors

Jessica Welter, Simon D. Brandt, Pierce Kavanagh, Markus R. Meyer, Hans H. Maurer

Abstract

The number of so-called new psychoactive substances (NPS) is still increasing by modification of the chemical structure of known (scheduled) drugs. As analogues of amphetamines, 2-aminopropyl-benzofurans were sold. They were consumed because of their euphoric and empathogenic effects. After the 5-(2-aminopropyl)benzofurans, the 6-(2-aminopropyl)benzofuran isomers appeared. Thus, the question arose whether the metabolic fate, the mass spectral fragmentation, and the detectability in urine are comparable or different and how an intake can be differentiated. In the present study, 6-(2-aminopropyl)benzofuran (6-APB) and its N-methyl derivative 6-MAPB (N-methyl-6-(2-aminopropyl)benzofuran) were investigated to answer these questions. The metabolites of both drugs were identified in rat urine and human liver preparations using GC-MS and/or liquid chromatography-high resolution-mass spectrometry (LC-HR-MS(n)). Besides the parent drug, the main metabolite of 6-APB was 4-carboxymethyl-3-hydroxy amphetamine and the main metabolites of 6-MAPB were 6-APB (N-demethyl metabolite) and 4-carboxymethyl-3-hydroxy methamphetamine. The cytochrome P450 (CYP) isoenzymes involved in the 6-MAPB N-demethylation were CYP1A2, CYP2D6, and CYP3A4. An intake of a common users' dose of 6-APB or 6-MAPB could be confirmed in rat urine using the authors' GC-MS and the LC-MS(n) standard urine screening approaches with the corresponding parent drugs as major target allowing their differentiation. Furthermore, a differentiation of 6-APB and 6-MAPB in urine from their positional isomers 5-APB and 5-MAPB was successfully performed after solid phase extraction and heptafluorobutyrylation by GC-MS via their retention times.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 46 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 46 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 8 17%
Student > Master 6 13%
Student > Ph. D. Student 5 11%
Student > Bachelor 4 9%
Other 2 4%
Other 6 13%
Unknown 15 33%
Readers by discipline Count As %
Chemistry 15 33%
Medicine and Dentistry 4 9%
Pharmacology, Toxicology and Pharmaceutical Science 2 4%
Environmental Science 1 2%
Unspecified 1 2%
Other 4 9%
Unknown 19 41%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 October 2021.
All research outputs
#8,261,140
of 25,371,288 outputs
Outputs from Analytical & Bioanalytical Chemistry
#1,975
of 9,618 outputs
Outputs of similar age
#89,130
of 270,090 outputs
Outputs of similar age from Analytical & Bioanalytical Chemistry
#27
of 149 outputs
Altmetric has tracked 25,371,288 research outputs across all sources so far. This one has received more attention than most of these and is in the 66th percentile.
So far Altmetric has tracked 9,618 research outputs from this source. They receive a mean Attention Score of 3.1. This one has done well, scoring higher than 77% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 270,090 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 65% of its contemporaries.
We're also able to compare this research output to 149 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 77% of its contemporaries.