↓ Skip to main content

The impact of acute lung injury, ECMO and transfusion on oxidative stress and plasma selenium levels in an ovine model

Overview of attention for article published in Journal of Trace Elements in Medicine and Biology, January 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user
facebook
1 Facebook page

Citations

dimensions_citation
18 Dimensions

Readers on

mendeley
40 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The impact of acute lung injury, ECMO and transfusion on oxidative stress and plasma selenium levels in an ovine model
Published in
Journal of Trace Elements in Medicine and Biology, January 2015
DOI 10.1016/j.jtemb.2015.01.004
Pubmed ID
Authors

Charles I. McDonald, Yoke Lin Fung, Kiran Shekar, Sara D. Diab, Kimble R. Dunster, Margaret R. Passmore, Samuel R. Foley, Gabriela Simonova, David Platts, John F. Fraser

Abstract

The purpose of this study was to determine the effects of smoke induced acute lung injury (S-ALI), extracorporeal membrane oxygenation (ECMO) and transfusion on oxidative stress and plasma selenium levels. Forty ewes were divided into (i) healthy control (n=4), (ii) S-ALI control (n=7), (iii) ECMO control (n=7), (iv) S-ALI+ECMO (n=8) and (v) S-ALI+ECMO+packed red blood cell (PRBC) transfusion (n=14). Plasma thiobarbituric acid reactive substances (TBARS), selenium and glutathione peroxidase (GPx) activity were analysed at baseline, after smoke injury (or sham) and 0.25, 1, 2, 6, 7, 12 and 24h after initiation of ECMO. Peak TBARS levels were similar across all groups. Plasma selenium decreased by 54% in S-ALI sheep (1.36±0.20 to 0.63±0.27μmol/L, p<0.0001), and 72% in sheep with S-ALI+ECMO at 24h (1.36±0.20 to 0.38±0.19, p<0.0001). PRBC transfusion had no effect on TBARS, selenium levels or glutathione peroxidase activity in plasma. While ECMO independently increased TBARS in healthy sheep to levels which were similar to the S-ALI control, the addition of ECMO after S-ALI caused a negligible increase in TBARS. This suggests that the initial lung injury was the predominant feature in the TBARS response. In contrast, the addition of ECMO in S-ALI sheep exacerbated reductions in plasma selenium beyond that of S-ALI or ECMO alone. Clinical studies are needed to confirm the extent and duration of selenium loss associated with ECMO.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 40 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Germany 1 3%
Unknown 39 98%

Demographic breakdown

Readers by professional status Count As %
Researcher 7 18%
Student > Ph. D. Student 5 13%
Student > Doctoral Student 4 10%
Student > Bachelor 4 10%
Student > Postgraduate 3 8%
Other 7 18%
Unknown 10 25%
Readers by discipline Count As %
Medicine and Dentistry 17 43%
Pharmacology, Toxicology and Pharmaceutical Science 2 5%
Veterinary Science and Veterinary Medicine 2 5%
Engineering 2 5%
Biochemistry, Genetics and Molecular Biology 1 3%
Other 4 10%
Unknown 12 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 31 March 2015.
All research outputs
#19,944,091
of 25,373,627 outputs
Outputs from Journal of Trace Elements in Medicine and Biology
#704
of 1,009 outputs
Outputs of similar age
#253,013
of 359,700 outputs
Outputs of similar age from Journal of Trace Elements in Medicine and Biology
#8
of 14 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. This one is in the 18th percentile – i.e., 18% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,009 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 12.4. This one is in the 27th percentile – i.e., 27% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 359,700 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 25th percentile – i.e., 25% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 14 others from the same source and published within six weeks on either side of this one. This one is in the 35th percentile – i.e., 35% of its contemporaries scored the same or lower than it.