↓ Skip to main content

Objects exhibit body model like shape distortions

Overview of attention for article published in Experimental Brain Research, February 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user

Citations

dimensions_citation
41 Dimensions

Readers on

mendeley
54 Mendeley
Title
Objects exhibit body model like shape distortions
Published in
Experimental Brain Research, February 2015
DOI 10.1007/s00221-015-4221-0
Pubmed ID
Authors

Aurelie Saulton, Trevor J. Dodds, Heinrich H. Bülthoff, Stephan de la Rosa

Abstract

Accurate knowledge about size and shape of the body derived from somatosensation is important to locate one's own body in space. The internal representation of these body metrics (body model) has been assessed by contrasting the distortions of participants' body estimates across two types of tasks (localization task vs. template matching task). Here, we examined to which extent this contrast is linked to the human body. We compared participants' shape estimates of their own hand and non-corporeal objects (rake, post-it pad, CD-box) between a localization task and a template matching task. While most items were perceived accurately in the visual template matching task, they appeared to be distorted in the localization task. All items' distortions were characterized by larger length underestimation compared to width. This pattern of distortion was maintained across orientation for the rake item only, suggesting that the biases measured on the rake were bound to an item-centric reference frame. This was previously assumed to be the case only for the hand. Although similar results can be found between non-corporeal items and the hand, the hand appears significantly more distorted than other items in the localization task. Therefore, we conclude that the magnitude of the distortions measured in the localization task is specific to the hand. Our results are in line with the idea that the localization task for the hand measures contributions of both an implicit body model that is not utilized in landmark localization with objects and other factors that are common to objects and the hand.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 54 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 54 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 14 26%
Researcher 13 24%
Student > Master 9 17%
Student > Bachelor 4 7%
Professor 3 6%
Other 8 15%
Unknown 3 6%
Readers by discipline Count As %
Psychology 25 46%
Neuroscience 8 15%
Social Sciences 2 4%
Nursing and Health Professions 1 2%
Immunology and Microbiology 1 2%
Other 5 9%
Unknown 12 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 March 2015.
All research outputs
#15,326,126
of 22,794,367 outputs
Outputs from Experimental Brain Research
#2,003
of 3,224 outputs
Outputs of similar age
#213,973
of 358,549 outputs
Outputs of similar age from Experimental Brain Research
#17
of 42 outputs
Altmetric has tracked 22,794,367 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,224 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.0. This one is in the 26th percentile – i.e., 26% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 358,549 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 42 others from the same source and published within six weeks on either side of this one. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.