↓ Skip to main content

Molecular Phylogenetic Analysis of Non-Sexually Transmitted Strains of Haemophilus ducreyi

Overview of attention for article published in PLOS ONE, March 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
19 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Molecular Phylogenetic Analysis of Non-Sexually Transmitted Strains of Haemophilus ducreyi
Published in
PLOS ONE, March 2015
DOI 10.1371/journal.pone.0118613
Pubmed ID
Authors

Jordan R. Gaston, Sally A. Roberts, Tricia L. Humphreys

Abstract

Haemophilus ducreyi, the etiologic agent of chancroid, has been previously reported to show genetic variance in several key virulence factors, placing strains of the bacterium into two genetically distinct classes. Recent studies done in yaws-endemic areas of the South Pacific have shown that H. ducreyi is also a major cause of cutaneous limb ulcers (CLU) that are not sexually transmitted. To genetically assess CLU strains relative to the previously described class I, class II phylogenetic hierarchy, we examined nucleotide sequence diversity at 11 H. ducreyi loci, including virulence and housekeeping genes, which encompass approximately 1% of the H. ducreyi genome. Sequences for all 11 loci indicated that strains collected from leg ulcers exhibit DNA sequences homologous to class I strains of H. ducreyi. However, sequences for 3 loci, including a hemoglobin receptor (hgbA), serum resistance protein (dsrA), and a collagen adhesin (ncaA) contained informative amounts of variation. Phylogenetic analyses suggest that these non-sexually transmitted strains of H. ducreyi comprise a sub-clonal population within class I strains of H. ducreyi. Molecular dating suggests that CLU strains are the most recently developed, having diverged approximately 0.355 million years ago, fourteen times more recently than the class I/class II divergence. The CLU strains' divergence falls after the divergence of humans from chimpanzees, making it the first known H. ducreyi divergence event directly influenced by the selective pressures accompanying human hosts.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 19 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
China 1 5%
Unknown 18 95%

Demographic breakdown

Readers by professional status Count As %
Researcher 4 21%
Student > Master 4 21%
Student > Ph. D. Student 3 16%
Student > Bachelor 2 11%
Lecturer 1 5%
Other 2 11%
Unknown 3 16%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 3 16%
Nursing and Health Professions 3 16%
Medicine and Dentistry 3 16%
Agricultural and Biological Sciences 3 16%
Immunology and Microbiology 2 11%
Other 2 11%
Unknown 3 16%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 March 2015.
All research outputs
#15,327,280
of 22,796,179 outputs
Outputs from PLOS ONE
#130,731
of 194,551 outputs
Outputs of similar age
#156,171
of 262,013 outputs
Outputs of similar age from PLOS ONE
#3,521
of 6,017 outputs
Altmetric has tracked 22,796,179 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 194,551 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 15.1. This one is in the 24th percentile – i.e., 24% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 262,013 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 6,017 others from the same source and published within six weeks on either side of this one. This one is in the 32nd percentile – i.e., 32% of its contemporaries scored the same or lower than it.