↓ Skip to main content

Intravenous immunoglobulin (IVIg) dampens neuronal toll-like receptor-mediated responses in ischemia

Overview of attention for article published in Journal of Neuroinflammation, April 2015
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (51st percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
5 X users

Citations

dimensions_citation
47 Dimensions

Readers on

mendeley
45 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Intravenous immunoglobulin (IVIg) dampens neuronal toll-like receptor-mediated responses in ischemia
Published in
Journal of Neuroinflammation, April 2015
DOI 10.1186/s12974-015-0294-8
Pubmed ID
Authors

Ker Zhing Lok, Milan Basta, Silvia Manzanero, Thiruma V Arumugam

Abstract

Ischemic stroke causes a high rate of deaths and permanent neurological damage in survivors. Ischemic stroke triggers the release of damage-associated molecular patterns (DAMPs) such as high-mobility group box 1 (HMGB1), which activate toll-like receptors (TLRs) and receptor for advanced glycation endproducts (RAGE) in the affected area, leading to an exaggerated inflammatory response and cell death. Both TLRs and RAGE are transmembrane pattern recognition receptors (PRRs) that have been shown to contribute to ischemic stroke-induced brain injury. Intravenous immunoglobulin (IVIg) preparations obtained by fractionating human blood plasma are increasingly being used as an effective therapeutic agent in the treatment of several inflammatory diseases. Its use as a potential therapeutic agent for treatment of stroke has been proposed, but little is known about the direct neuroprotective mechanisms of IVIg. We therefore investigate whether IVIg exerts its beneficial effects on the outcome of neuronal injury by modulating HMGB1-induced TLR and RAGE expressions and activations. Primary cortical neurons were subjected to glucose deprivation or oxygen and glucose deprivation conditions and treated with IVIg and recombinant HMGB1. C57/BL6J mice were subjected to middle cerebral artery occlusion, followed by reperfusion, and IVIg was administered intravenously 3 h after the start of reperfusion. Expression of TLRs, RAGE and downstream signalling proteins in neurons and brain tissues were evaluated by immunoblot. Treatment of cultured neurons with IVIg reduced simulated ischemia-induced TLR2, TLR4, TLR8 and RAGE expressions, pro-apoptotic caspase-3 cleavage and phosphorylation of the cell death-associated kinases such as c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK) as well as the p65 subunit of nuclear factor kappa B (NF-κB). These results were recapitulated in an in vivo model of stroke. IVIg treatment also upregulated the anti-apoptotic protein B-cell lymphoma 2 (Bcl-2) in cortical neurons under ischemic conditions. Finally, IVIg protected neurons against HMGB1-induced neuronal cell death by modulating TLR and RAGE expressions and signalling pathways. Taken together, these results provide a rationale for the potential use of IVIg to target inappropriately activated components of the innate immune system following ischemic stroke.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 45 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 2%
Unknown 44 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 12 27%
Other 6 13%
Researcher 5 11%
Student > Bachelor 4 9%
Student > Master 4 9%
Other 7 16%
Unknown 7 16%
Readers by discipline Count As %
Medicine and Dentistry 14 31%
Neuroscience 6 13%
Agricultural and Biological Sciences 5 11%
Nursing and Health Professions 3 7%
Biochemistry, Genetics and Molecular Biology 2 4%
Other 9 20%
Unknown 6 13%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 August 2016.
All research outputs
#14,665,103
of 25,470,300 outputs
Outputs from Journal of Neuroinflammation
#1,585
of 2,958 outputs
Outputs of similar age
#131,926
of 278,880 outputs
Outputs of similar age from Journal of Neuroinflammation
#35
of 55 outputs
Altmetric has tracked 25,470,300 research outputs across all sources so far. This one is in the 41st percentile – i.e., 41% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,958 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.7. This one is in the 45th percentile – i.e., 45% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 278,880 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 51% of its contemporaries.
We're also able to compare this research output to 55 others from the same source and published within six weeks on either side of this one. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.