↓ Skip to main content

An analytical framework for whole-genome sequence association studies and its implications for autism spectrum disorder

Overview of attention for article published in Nature Genetics, April 2018
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (95th percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
117 X users
facebook
1 Facebook page
wikipedia
8 Wikipedia pages
video
1 YouTube creator

Citations

dimensions_citation
235 Dimensions

Readers on

mendeley
399 Mendeley
citeulike
4 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
An analytical framework for whole-genome sequence association studies and its implications for autism spectrum disorder
Published in
Nature Genetics, April 2018
DOI 10.1038/s41588-018-0107-y
Pubmed ID
Authors

Donna M. Werling, Harrison Brand, Joon-Yong An, Matthew R. Stone, Lingxue Zhu, Joseph T. Glessner, Ryan L. Collins, Shan Dong, Ryan M. Layer, Eirene Markenscoff-Papadimitriou, Andrew Farrell, Grace B. Schwartz, Harold Z. Wang, Benjamin B. Currall, Xuefang Zhao, Jeanselle Dea, Clif Duhn, Carolyn A. Erdman, Michael C. Gilson, Rachita Yadav, Robert E. Handsaker, Seva Kashin, Lambertus Klei, Jeffrey D. Mandell, Tomasz J. Nowakowski, Yuwen Liu, Sirisha Pochareddy, Louw Smith, Michael F. Walker, Matthew J. Waterman, Xin He, Arnold R. Kriegstein, John L. Rubenstein, Nenad Sestan, Steven A. McCarroll, Benjamin M. Neale, Hilary Coon, A. Jeremy Willsey, Joseph D. Buxbaum, Mark J. Daly, Matthew W. State, Aaron R. Quinlan, Gabor T. Marth, Kathryn Roeder, Bernie Devlin, Michael E. Talkowski, Stephan J. Sanders

Abstract

Genomic association studies of common or rare protein-coding variation have established robust statistical approaches to account for multiple testing. Here we present a comparable framework to evaluate rare and de novo noncoding single-nucleotide variants, insertion/deletions, and all classes of structural variation from whole-genome sequencing (WGS). Integrating genomic annotations at the level of nucleotides, genes, and regulatory regions, we define 51,801 annotation categories. Analyses of 519 autism spectrum disorder families did not identify association with any categories after correction for 4,123 effective tests. Without appropriate correction, biologically plausible associations are observed in both cases and controls. Despite excluding previously identified gene-disrupting mutations, coding regions still exhibited the strongest associations. Thus, in autism, the contribution of de novo noncoding variation is probably modest in comparison to that of de novo coding variants. Robust results from future WGS studies will require large cohorts and comprehensive analytical strategies that consider the substantial multiple-testing burden.

X Demographics

X Demographics

The data shown below were collected from the profiles of 117 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 399 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 399 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 95 24%
Student > Ph. D. Student 70 18%
Student > Bachelor 30 8%
Student > Master 28 7%
Student > Doctoral Student 21 5%
Other 48 12%
Unknown 107 27%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 104 26%
Agricultural and Biological Sciences 76 19%
Neuroscience 30 8%
Medicine and Dentistry 26 7%
Computer Science 9 2%
Other 35 9%
Unknown 119 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 67. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 May 2023.
All research outputs
#652,266
of 26,017,215 outputs
Outputs from Nature Genetics
#1,250
of 7,639 outputs
Outputs of similar age
#14,443
of 342,597 outputs
Outputs of similar age from Nature Genetics
#40
of 63 outputs
Altmetric has tracked 26,017,215 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 96th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 7,639 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 43.7. This one has done well, scoring higher than 83% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 342,597 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 95% of its contemporaries.
We're also able to compare this research output to 63 others from the same source and published within six weeks on either side of this one. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.