↓ Skip to main content

Genetics and mechanism of resistance to deltamethrin in the house fly, Musca domestica L., from Pakistan

Overview of attention for article published in Ecotoxicology, May 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
27 Dimensions

Readers on

mendeley
16 Mendeley
Title
Genetics and mechanism of resistance to deltamethrin in the house fly, Musca domestica L., from Pakistan
Published in
Ecotoxicology, May 2015
DOI 10.1007/s10646-015-1482-0
Pubmed ID
Authors

Hafiz Azhar Ali Khan, Waseem Akram, Muhammad Saleem Haider

Abstract

Deltamethrin (a pyrethroid insecticide) has widely been used against the house fly, Musca domestica, a pest found in livestock facilities worldwide. Although, cases of both metabolic and physiological resistance to deltamethrin have been reported in different parts of the world, no studies have been reported to characterize this resistance in house flies from Pakistan. In the present study, we investigated a field strain of house flies for potential to develop resistance to deltamethrin. Also, its stability, possible mechanisms and cross-resistance potential to other insecticides. Before the selection experiments, the field strain showed 8.41-, 3.65-, 8.39-, 2.68-, 19.17- and 5.96-fold resistance to deltamethrin, bifenthrin, lambda-cyhalothrin, chlorpyrifos, profenofos and spinosad, respectively, compared with the reference strain (Lab-susceptible). Continuous selection of the field strain (Delta-SEL) with deltamethrin for six generations (G1-G6) in the laboratory increased the resistance ratio to 176.34 after bioassay at G7. The Delta-SEL strain was reared for the next four generations without exposure to deltamethrin and bioassayed at G11 which revealed that the resistance was stable. The Delta-SEL strain at G7 showed cross-resistance to all other insecticides except spinosad, when compared to the bioassays before the selection experiment (G1). Crosses between Delta-SEL and Lab-susceptible strains revealed an autosomal and incomplete dominant mode of resistance to deltamethrin. A direct test using a monogenic inheritance model revealed that the resistance was governed by more than one factor. Moreover, synergism studies with the enzyme inhibitors PBO and DEF reduced the resistance to deltamethrin in the selected strain up to 2.51- and 2.19-fold, respectively, which revealed that the resistance was possibly due to microsomal oxidase and esterase activity. It is concluded that the resistance to deltamethrin was autosomal and incompletely dominant. The high cross-resistance of bifenthrin, lambda-cyhalothrin, chlorpyrifos and profenofos in the Delta-SEL strain suggests that other insecticides would be necessary to counter the resistance. These results are therefore suggestive for implications in the management of insecticide resistance in house flies.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 16 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Mexico 1 6%
Unknown 15 94%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 25%
Professor > Associate Professor 2 13%
Student > Master 2 13%
Student > Doctoral Student 1 6%
Professor 1 6%
Other 2 13%
Unknown 4 25%
Readers by discipline Count As %
Agricultural and Biological Sciences 6 38%
Veterinary Science and Veterinary Medicine 1 6%
Business, Management and Accounting 1 6%
Environmental Science 1 6%
Earth and Planetary Sciences 1 6%
Other 1 6%
Unknown 5 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 July 2015.
All research outputs
#17,756,606
of 22,803,211 outputs
Outputs from Ecotoxicology
#726
of 1,475 outputs
Outputs of similar age
#179,365
of 263,982 outputs
Outputs of similar age from Ecotoxicology
#24
of 57 outputs
Altmetric has tracked 22,803,211 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,475 research outputs from this source. They receive a mean Attention Score of 3.5. This one is in the 43rd percentile – i.e., 43% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 263,982 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 57 others from the same source and published within six weeks on either side of this one. This one is in the 33rd percentile – i.e., 33% of its contemporaries scored the same or lower than it.