↓ Skip to main content

Apaf1-deficient cortical neurons exhibit defects in axonal outgrowth

Overview of attention for article published in Cellular and Molecular Life Sciences, May 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user

Citations

dimensions_citation
6 Dimensions

Readers on

mendeley
20 Mendeley
Title
Apaf1-deficient cortical neurons exhibit defects in axonal outgrowth
Published in
Cellular and Molecular Life Sciences, May 2015
DOI 10.1007/s00018-015-1927-x
Pubmed ID
Authors

Daniela De Zio, Francesca Molinari, Salvatore Rizza, Lucia Gatta, Maria Teresa Ciotti, Anna Maria Salvatore, Søs Grønbæk Mathiassen, Andrzej W. Cwetsch, Giuseppe Filomeni, Giuseppe Rosano, Elisabetta Ferraro

Abstract

The establishment of neuronal polarity and axonal outgrowth are key processes affecting neuronal migration and synapse formation, their impairment likely leading to cognitive deficits. Here we have found that the apoptotic protease activating factor 1 (Apaf1), apart from its canonical role in apoptosis, plays an additional function in cortical neurons, where its deficiency specifically impairs axonal growth. Given the central role played by centrosomes and microtubules in the polarized extension of the axon, our data suggest that Apaf1-deletion affects axonal outgrowth through an impairment of centrosome organization. In line with this, centrosomal protein expression, as well as their centrosomal localization proved to be altered upon Apaf1-deletion. Strikingly, we also found that Apaf1-loss affects trans-Golgi components and leads to a robust activation of AMP-dependent protein kinase (AMPK), this confirming the stressful conditions induced by Apaf1-deficiency. Since AMPK hyper-phosphorylation is known to impair a proper axon elongation, our finding contributes to explain the effect of Apaf1-deficiency on axogenesis. We also discovered that the signaling pathways mediating axonal growth and involving glycogen synthase kinase-3β, liver kinase B1, and collapsing-response mediator protein-2 are altered in Apaf1-KO neurons. Overall, our results reveal a novel non-apoptotic role for Apaf1 in axonal outgrowth, suggesting that the neuronal phenotype due to Apaf1-deletion could not only be fully ascribed to apoptosis inhibition, but might also be the result of defects in axogenesis. The discovery of new molecules involved in axonal elongation has a clinical relevance since it might help to explain neurological abnormalities occurring during early brain development.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 20 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 20 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 6 30%
Student > Master 4 20%
Student > Postgraduate 2 10%
Professor 2 10%
Student > Ph. D. Student 2 10%
Other 3 15%
Unknown 1 5%
Readers by discipline Count As %
Agricultural and Biological Sciences 6 30%
Neuroscience 4 20%
Medicine and Dentistry 4 20%
Biochemistry, Genetics and Molecular Biology 2 10%
Psychology 1 5%
Other 1 5%
Unknown 2 10%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 May 2015.
All research outputs
#16,031,680
of 23,794,258 outputs
Outputs from Cellular and Molecular Life Sciences
#3,071
of 4,151 outputs
Outputs of similar age
#158,785
of 265,975 outputs
Outputs of similar age from Cellular and Molecular Life Sciences
#41
of 60 outputs
Altmetric has tracked 23,794,258 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,151 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.0. This one is in the 19th percentile – i.e., 19% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 265,975 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 60 others from the same source and published within six weeks on either side of this one. This one is in the 30th percentile – i.e., 30% of its contemporaries scored the same or lower than it.