↓ Skip to main content

TraeALDH7B1-5A, encoding aldehyde dehydrogenase 7 in wheat, confers improved drought tolerance in Arabidopsis

Overview of attention for article published in Planta, April 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
31 Dimensions

Readers on

mendeley
37 Mendeley
Title
TraeALDH7B1-5A, encoding aldehyde dehydrogenase 7 in wheat, confers improved drought tolerance in Arabidopsis
Published in
Planta, April 2015
DOI 10.1007/s00425-015-2290-8
Pubmed ID
Authors

Jiamin Chen, Bo Wei, Guoliang Li, Renchun Fan, Yongda Zhong, Xianping Wang, Xiangqi Zhang

Abstract

TraeALDH7B1 - 5A , encoding aldehyde dehydrogenase 7 in wheat, conferred significant drought tolerance to Arabidopsis , supported by molecular biological and physiological experiments. Drought stress significantly affects wheat yields. Aldehyde dehydrogenase (ALDH) is a family of enzymes catalyzing the irreversible conversion of aldehydes into acids to decrease the damage caused by abiotic stresses. However, no wheat ALDH member has been functionally characterized to date. Here, we obtained a differentially expressed EST encoding ALDH7 from a cDNA-AFLP library of wheat that was treated with polyethylene glycol 6000. The three full-length homologs of TraeALDH7B1 were isolated by searching the NCBI database and by homolog-based cloning method. Using nulli-tetrasomic lines we located them on wheat chromosomes 5A, 5B and 5D, and named them as TraeALDH7B1-5A, -5B and -5D, respectively. Gene expression profiles indicated that the expressions of all three genes were induced in roots, leaves, culms and spikelets under drought and salt stresses. Enzymatic activity analysis showed that TraeALDH7B1-5A had acetaldehyde dehydrogenase activity. For further functional analysis, we developed transgenic Arabidopsis lines overexpressing TraeALDH7B1-5A driven by the cauliflower mosaic virus 35S promoter. Compared with wild type Arabidopsis, 35S::TraeALDH7B1-5A plants significantly enhanced the tolerance to drought stress, which was demonstrated by up-regulation of stress responsive genes and physiological evidence of primary root length, maintenance of water retention and contents of chlorophyll and MDA. The combined results indicated that TraeALDH7B1-5A is an important drought responsive gene for genetic transformation to improve drought tolerance in crops.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 37 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Spain 2 5%
Chile 1 3%
Unknown 34 92%

Demographic breakdown

Readers by professional status Count As %
Researcher 13 35%
Student > Ph. D. Student 7 19%
Student > Doctoral Student 4 11%
Student > Master 2 5%
Student > Bachelor 1 3%
Other 1 3%
Unknown 9 24%
Readers by discipline Count As %
Agricultural and Biological Sciences 23 62%
Biochemistry, Genetics and Molecular Biology 3 8%
Unspecified 1 3%
Psychology 1 3%
Decision Sciences 1 3%
Other 0 0%
Unknown 8 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 April 2016.
All research outputs
#18,410,971
of 22,805,349 outputs
Outputs from Planta
#2,152
of 2,718 outputs
Outputs of similar age
#193,378
of 265,103 outputs
Outputs of similar age from Planta
#25
of 40 outputs
Altmetric has tracked 22,805,349 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,718 research outputs from this source. They receive a mean Attention Score of 3.3. This one is in the 12th percentile – i.e., 12% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 265,103 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 15th percentile – i.e., 15% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 40 others from the same source and published within six weeks on either side of this one. This one is in the 30th percentile – i.e., 30% of its contemporaries scored the same or lower than it.