↓ Skip to main content

Potential genetic modifiers of disease risk and age at onset in patients with frontotemporal lobar degeneration and GRN mutations: a genome-wide association study

Overview of attention for article published in Lancet Neurology, April 2018
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (92nd percentile)
  • High Attention Score compared to outputs of the same age and source (81st percentile)

Mentioned by

news
1 news outlet
twitter
36 X users
patent
5 patents
facebook
1 Facebook page

Citations

dimensions_citation
95 Dimensions

Readers on

mendeley
249 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Potential genetic modifiers of disease risk and age at onset in patients with frontotemporal lobar degeneration and GRN mutations: a genome-wide association study
Published in
Lancet Neurology, April 2018
DOI 10.1016/s1474-4422(18)30126-1
Pubmed ID
Authors

Cyril Pottier, Xiaolai Zhou, Ralph B Perkerson, Matt Baker, Gregory D Jenkins, Daniel J Serie, Roberta Ghidoni, Luisa Benussi, Giuliano Binetti, Adolfo López de Munain, Miren Zulaica, Fermin Moreno, Isabelle Le Ber, Florence Pasquier, Didier Hannequin, Raquel Sánchez-Valle, Anna Antonell, Albert Lladó, Tammee M Parsons, NiCole A Finch, Elizabeth C Finger, Carol F Lippa, Edward D Huey, Manuela Neumann, Peter Heutink, Matthis Synofzik, Carlo Wilke, Robert A Rissman, Jaroslaw Slawek, Emilia Sitek, Peter Johannsen, Jørgen E Nielsen, Yingxue Ren, Marka van Blitterswijk, Mariely DeJesus-Hernandez, Elizabeth Christopher, Melissa E Murray, Kevin F Bieniek, Bret M Evers, Camilla Ferrari, Sara Rollinson, Anna Richardson, Elio Scarpini, Giorgio G Fumagalli, Alessandro Padovani, John Hardy, Parastoo Momeni, Raffaele Ferrari, Francesca Frangipane, Raffaele Maletta, Maria Anfossi, Maura Gallo, Leonard Petrucelli, EunRan Suh, Oscar L Lopez, Tsz H Wong, Jeroen G J van Rooij, Harro Seelaar, Simon Mead, Richard J Caselli, Eric M Reiman, Marwan Noel Sabbagh, Mads Kjolby, Anders Nykjaer, Anna M Karydas, Adam L Boxer, Lea T Grinberg, Jordan Grafman, Salvatore Spina, Adrian Oblak, M-Marsel Mesulam, Sandra Weintraub, Changiz Geula, John R Hodges, Olivier Piguet, William S Brooks, David J Irwin, John Q Trojanowski, Edward B Lee, Keith A Josephs, Joseph E Parisi, Nilüfer Ertekin-Taner, David S Knopman, Benedetta Nacmias, Irene Piaceri, Silvia Bagnoli, Sandro Sorbi, Marla Gearing, Jonathan Glass, Thomas G Beach, Sandra E Black, Mario Masellis, Ekaterina Rogaeva, Jean-Paul Vonsattel, Lawrence S Honig, Julia Kofler, Amalia C Bruni, Julie Snowden, David Mann, Stuart Pickering-Brown, Janine Diehl-Schmid, Juliane Winkelmann, Daniela Galimberti, Caroline Graff, Linn Öijerstedt, Claire Troakes, Safa Al-Sarraj, Carlos Cruchaga, Nigel J Cairns, Jonathan D Rohrer, Glenda M Halliday, John B Kwok, John C van Swieten, Charles L White, Bernardino Ghetti, Jill R Murell, Ian R A Mackenzie, Ging-Yuek R Hsiung, Barbara Borroni, Giacomina Rossi, Fabrizio Tagliavini, Zbigniew K Wszolek, Ronald C Petersen, Eileen H Bigio, Murray Grossman, Vivianna M Van Deerlin, William W Seeley, Bruce L Miller, Neill R Graff-Radford, Bradley F Boeve, Dennis W Dickson, Joanna M Biernacka, Rosa Rademakers

Abstract

Loss-of-function mutations in GRN cause frontotemporal lobar degeneration (FTLD). Patients with GRN mutations present with a uniform subtype of TAR DNA-binding protein 43 (TDP-43) pathology at autopsy (FTLD-TDP type A); however, age at onset and clinical presentation are variable, even within families. We aimed to identify potential genetic modifiers of disease onset and disease risk in GRN mutation carriers. The study was done in three stages: a discovery stage, a replication stage, and a meta-analysis of the discovery and replication data. In the discovery stage, genome-wide logistic and linear regression analyses were done to test the association of genetic variants with disease risk (case or control status) and age at onset in patients with a GRN mutation and controls free of neurodegenerative disorders. Suggestive loci (p<1 × 10-5) were genotyped in a replication cohort of patients and controls, followed by a meta-analysis. The effect of genome-wide significant variants at the GFRA2 locus on expression of GFRA2 was assessed using mRNA expression studies in cerebellar tissue samples from the Mayo Clinic brain bank. The effect of the GFRA2 locus on progranulin concentrations was studied using previously generated ELISA-based expression data. Co-immunoprecipitation experiments in HEK293T cells were done to test for a direct interaction between GFRA2 and progranulin. Individuals were enrolled in the current study between Sept 16, 2014, and Oct 5, 2017. After quality control measures, statistical analyses in the discovery stage included 382 unrelated symptomatic GRN mutation carriers and 1146 controls free of neurodegenerative disorders collected from 34 research centres located in the USA, Canada, Australia, and Europe. In the replication stage, 210 patients (67 symptomatic GRN mutation carriers and 143 patients with FTLD without GRN mutations pathologically confirmed as FTLD-TDP type A) and 1798 controls free of neurodegenerative diseases were recruited from 26 sites, 20 of which overlapped with the discovery stage. No genome-wide significant association with age at onset was identified in the discovery or replication stages, or in the meta-analysis. However, in the case-control analysis, we replicated the previously reported TMEM106B association (rs1990622 meta-analysis odds ratio [OR] 0·54, 95% CI 0·46-0·63; p=3·54 × 10-16), and identified a novel genome-wide significant locus at GFRA2 on chromosome 8p21.3 associated with disease risk (rs36196656 meta-analysis OR 1·49, 95% CI 1·30-1·71; p=1·58 × 10-8). Expression analyses showed that the risk-associated allele at rs36196656 decreased GFRA2 mRNA concentrations in cerebellar tissue (p=0·04). No effect of rs36196656 on plasma and CSF progranulin concentrations was detected by ELISA; however, co-immunoprecipitation experiments in HEK293T cells did suggest a direct binding of progranulin and GFRA2. TMEM106B-related and GFRA2-related pathways might be future targets for treatments for FTLD, but the biological interaction between progranulin and these potential disease modifiers requires further study. TMEM106B and GFRA2 might also provide opportunities to select and stratify patients for future clinical trials and, when more is known about their potential effects, to inform genetic counselling, especially for asymptomatic individuals. National Institute on Aging, National Institute of Neurological Disorders and Stroke, Canadian Institutes of Health Research, Italian Ministry of Health, UK National Institute for Health Research, National Health and Medical Research Council of Australia, and the French National Research Agency.

X Demographics

X Demographics

The data shown below were collected from the profiles of 36 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 249 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 249 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 38 15%
Student > Ph. D. Student 32 13%
Other 25 10%
Student > Master 23 9%
Student > Bachelor 21 8%
Other 47 19%
Unknown 63 25%
Readers by discipline Count As %
Neuroscience 49 20%
Medicine and Dentistry 40 16%
Biochemistry, Genetics and Molecular Biology 32 13%
Psychology 12 5%
Agricultural and Biological Sciences 9 4%
Other 28 11%
Unknown 79 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 37. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 March 2024.
All research outputs
#1,104,579
of 25,605,018 outputs
Outputs from Lancet Neurology
#711
of 4,040 outputs
Outputs of similar age
#23,918
of 339,109 outputs
Outputs of similar age from Lancet Neurology
#12
of 61 outputs
Altmetric has tracked 25,605,018 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 95th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 4,040 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 35.7. This one has done well, scoring higher than 82% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 339,109 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 92% of its contemporaries.
We're also able to compare this research output to 61 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 81% of its contemporaries.