↓ Skip to main content

Production of Δ9-tetrahydrocannabinolic acid from cannabigerolic acid by whole cells of Pichia (Komagataella) pastoris expressing Δ9-tetrahydrocannabinolic acid synthase from Cannabis satival.

Overview of attention for article published in Biotechnology Techniques, May 2015
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • One of the highest-scoring outputs from this source (#4 of 2,762)
  • High Attention Score compared to outputs of the same age (98th percentile)
  • High Attention Score compared to outputs of the same age and source (96th percentile)

Mentioned by

news
7 news outlets
blogs
6 blogs
twitter
20 X users
patent
24 patents
facebook
11 Facebook pages
wikipedia
1 Wikipedia page
googleplus
2 Google+ users

Citations

dimensions_citation
61 Dimensions

Readers on

mendeley
307 Mendeley
Title
Production of Δ9-tetrahydrocannabinolic acid from cannabigerolic acid by whole cells of Pichia (Komagataella) pastoris expressing Δ9-tetrahydrocannabinolic acid synthase from Cannabis satival.
Published in
Biotechnology Techniques, May 2015
DOI 10.1007/s10529-015-1853-x
Pubmed ID
Authors

Bastian Zirpel, Felix Stehle, Oliver Kayser

Abstract

The Δ9-tetrahydrocannabinolic acid synthase (THCAS) from Cannabis sativa was expressed intracellularly in different organisms to investigate the potential of a biotechnological production of Δ9-tetrahydrocannabinolic acid (THCA) using whole cells. Functional expression of THCAS was obtained in Saccharomyces cerevisiae and Pichia (Komagataella) pastoris using a signal peptide from the vacuolar protease, proteinase A. No functional expression was achieved in Escherichia coli. The highest volumetric activities obtained were 98 pkat ml(-1) (intracellular) and 44 pkat ml(-1) (extracellular) after 192 h of cultivation at 15 °C using P. pastoris cells. Low solubility of CBGA prevents the THCAS application in aqueous cell-free systems, thus whole cells were used for a bioconversion of cannabigerolic acid (CBGA) to THCA. Finally, 1 mM (0.36 g THCA l(-1)) THCA could be produced by 10.5 gCDW l(-1) before enzyme activity was lost. Whole cells of P. pastoris offer the capability of synthesizing pharmaceutical THCA production.

X Demographics

X Demographics

The data shown below were collected from the profiles of 20 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 307 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 3 <1%
Canada 1 <1%
Unknown 303 99%

Demographic breakdown

Readers by professional status Count As %
Researcher 63 21%
Student > Bachelor 54 18%
Student > Ph. D. Student 52 17%
Student > Master 35 11%
Other 11 4%
Other 33 11%
Unknown 59 19%
Readers by discipline Count As %
Agricultural and Biological Sciences 94 31%
Biochemistry, Genetics and Molecular Biology 78 25%
Chemistry 18 6%
Chemical Engineering 12 4%
Engineering 8 3%
Other 34 11%
Unknown 63 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 137. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 March 2024.
All research outputs
#303,183
of 25,374,917 outputs
Outputs from Biotechnology Techniques
#4
of 2,762 outputs
Outputs of similar age
#3,167
of 280,401 outputs
Outputs of similar age from Biotechnology Techniques
#1
of 32 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 98th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 2,762 research outputs from this source. They receive a mean Attention Score of 3.9. This one has done particularly well, scoring higher than 99% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 280,401 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 98% of its contemporaries.
We're also able to compare this research output to 32 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 96% of its contemporaries.