↓ Skip to main content

Metabolism of β-valine via a CoA-dependent ammonia lyase pathway

Overview of attention for article published in Applied Microbiology and Biotechnology, May 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user

Citations

dimensions_citation
2 Dimensions

Readers on

mendeley
17 Mendeley
Title
Metabolism of β-valine via a CoA-dependent ammonia lyase pathway
Published in
Applied Microbiology and Biotechnology, May 2015
DOI 10.1007/s00253-015-6551-z
Pubmed ID
Authors

Marleen Otzen, Ciprian G. Crismaru, Christiaan P. Postema, Hein J. Wijma, Matthew M. Heberling, Wiktor Szymanski, Stefaan de Wildeman, Dick B. Janssen

Abstract

Pseudomonas species strain SBV1 can rapidly grow on medium containing β-valine as a sole nitrogen source. The tertiary amine feature of β-valine prevents direct deamination reactions catalyzed by aminotransferases, amino acid dehydrogenases, and amino acid oxidases. However, lyase- or aminomutase-mediated conversions would be possible. To identify enzymes involved in the degradation of β-valine, a PsSBV1 gene library was prepared and used to complement the β-valine growth deficiency of a closely related Pseudomonas strain. This resulted in the identification of a gene encoding β-valinyl-coenzyme A ligase (BvaA) and two genes encoding β-valinyl-CoA ammonia lyases (BvaB1 and BvaB2). The BvaA protein demonstrated high sequence identity to several known phenylacetate CoA ligases. Purified BvaA enzyme did not convert phenyl acetic acid but was able to activate β-valine in an adenosine triphosphate (ATP)- and CoA-dependent manner. The substrate range of the enzyme appears to be narrow, converting only β-valine and to a lesser extent, 3-aminobutyrate and β-alanine. Characterization of BvaB1 and BvaB2 revealed that both enzymes were able to deaminate β-valinyl-CoA to produce 3-methylcrotonyl-CoA, a common intermediate in the leucine degradation pathway. Interestingly, BvaB1 and BvaB2 demonstrated no significant sequence identity to known CoA-dependent ammonia lyases, suggesting they belong to a new family of enzymes. BLAST searches revealed that BvaB1 and BvaB2 show high sequence identity to each other and to several enoyl-CoA hydratases, a class of enzymes that catalyze a similar reaction with water instead of amine as the leaving group.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 17 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Netherlands 1 6%
Unknown 16 94%

Demographic breakdown

Readers by professional status Count As %
Researcher 4 24%
Student > Ph. D. Student 2 12%
Student > Master 2 12%
Other 1 6%
Student > Bachelor 1 6%
Other 3 18%
Unknown 4 24%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 4 24%
Agricultural and Biological Sciences 2 12%
Chemistry 2 12%
Social Sciences 1 6%
Environmental Science 1 6%
Other 2 12%
Unknown 5 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 May 2015.
All research outputs
#16,371,088
of 24,119,703 outputs
Outputs from Applied Microbiology and Biotechnology
#5,817
of 8,034 outputs
Outputs of similar age
#160,807
of 270,624 outputs
Outputs of similar age from Applied Microbiology and Biotechnology
#69
of 135 outputs
Altmetric has tracked 24,119,703 research outputs across all sources so far. This one is in the 21st percentile – i.e., 21% of other outputs scored the same or lower than it.
So far Altmetric has tracked 8,034 research outputs from this source. They receive a mean Attention Score of 4.3. This one is in the 22nd percentile – i.e., 22% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 270,624 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 135 others from the same source and published within six weeks on either side of this one. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.