↓ Skip to main content

Cortical neural arousal is differentially affected by type of physical exercise performed

Overview of attention for article published in Experimental Brain Research, March 2018
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • Among the highest-scoring outputs from this source (#38 of 3,241)
  • High Attention Score compared to outputs of the same age (95th percentile)
  • High Attention Score compared to outputs of the same age and source (98th percentile)

Mentioned by

news
5 news outlets
blogs
1 blog
twitter
4 X users

Citations

dimensions_citation
9 Dimensions

Readers on

mendeley
51 Mendeley
Title
Cortical neural arousal is differentially affected by type of physical exercise performed
Published in
Experimental Brain Research, March 2018
DOI 10.1007/s00221-018-5247-x
Pubmed ID
Authors

Nicholas J. Hanson, Lindsey E. Short, Lauren T. Flood, Nicholas P. Cherup, Michael G. Miller

Abstract

Critical flicker frequency (CFF) threshold is a visual discrimination task designed to assess cortical neural arousal, where higher values are associated with increased information processing and improved cognitive function. Previous studies using CFF assessments before and after exercise have only used one type of exercise (e.g., short, fatiguing, steady state, time to exhaustion, etc.). Therefore, the purpose of this study was to determine the effect of exercise type and intensity on neural arousal. 22 recreational runners (10 men, 12 women; age 25 ± 6 years) volunteered to participate in the study. They completed a VO2max test (short, fatiguing trial), and three 30-min treadmill runs (longer, steady-state trials) at rating of perceived exertion (RPE) levels of 13, 15, and 17. Before and after each exercise test, subjects were asked to complete the CFF test; Mtot and Mdi were calculated, which are the average and difference of the ascending/descending frequency trials, respectively. There were no main effects found for either intensity (p = 0.641) or time (p = 0.283); there was, however, a significant interaction found (intensity*time; p = 0.001). In the VO2max test and in the longer, steady-state runs at RPE13 and 15, there was no change in Mtot. There was a significant increase in Mtot after the run at RPE17 (p = 0.019). For Mdi, the VO2max test elicited a significant decrease (p = 0.005), but there was no change after the steady-state runs. The results suggest that short, fatiguing and longer, steady-state exercise affect cortical neural arousal differently. Increases in arousal, and perhaps the related domain of information processing, are more likely to come from steady-state exercise at a vigorous intensity.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 51 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 51 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 5 10%
Student > Ph. D. Student 5 10%
Professor > Associate Professor 3 6%
Student > Master 3 6%
Lecturer 3 6%
Other 12 24%
Unknown 20 39%
Readers by discipline Count As %
Social Sciences 7 14%
Psychology 5 10%
Neuroscience 5 10%
Sports and Recreations 4 8%
Nursing and Health Professions 3 6%
Other 5 10%
Unknown 22 43%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 59. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 August 2022.
All research outputs
#623,257
of 23,025,074 outputs
Outputs from Experimental Brain Research
#38
of 3,241 outputs
Outputs of similar age
#15,858
of 329,877 outputs
Outputs of similar age from Experimental Brain Research
#1
of 51 outputs
Altmetric has tracked 23,025,074 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 97th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 3,241 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.0. This one has done particularly well, scoring higher than 98% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 329,877 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 95% of its contemporaries.
We're also able to compare this research output to 51 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 98% of its contemporaries.