↓ Skip to main content

Lysozyme aptasensor based on a glassy carbon electrode modified with a nanocomposite consisting of multi-walled carbon nanotubes, poly(diallyl dimethyl ammonium chloride) and carbon quantum dots

Overview of attention for article published in Microchimica Acta, February 2018
Altmetric Badge

Mentioned by

facebook
1 Facebook page

Citations

dimensions_citation
32 Dimensions

Readers on

mendeley
38 Mendeley
Title
Lysozyme aptasensor based on a glassy carbon electrode modified with a nanocomposite consisting of multi-walled carbon nanotubes, poly(diallyl dimethyl ammonium chloride) and carbon quantum dots
Published in
Microchimica Acta, February 2018
DOI 10.1007/s00604-017-2656-7
Pubmed ID
Authors

Behzad Rezaei, Hamid Reza Jamei, Ali Asghar Ensafi

Abstract

An aptamer-based method is described for electrochemical determination of lysozyme. A glassy carbon electrode was modified with a nanocomposite composed of multi-walled carbon nanotubes, poly(diallyl dimethyl ammonium chloride), and carbon quantum dots. The composition of the nanocomposite (MWCNT/PDDA/CQD) warrants good electrical conductivity and a high surface-to-volume ratio. The lysozyme-binding aptamers were immobilized on the nanocomposite via covalent coupling between the amino groups of the aptamer and the carboxy groups of the nanocomposite. The modified electrode was characterized by electrochemical impedance spectroscopy, cyclic voltammetry and differential pulse voltammetry. The use of this nanocomposite results in a considerable enhancement of the electrochemical signal and contributes to improving sensitivity. Hexacyanoferrate was used as an electrochemical probe to study the dependence of the peak current on lysozyme concentration. In the presence of lysozyme, the interaction of lysozyme with immobilized aptamer results in a decrease of the peak current, best measured at +0.15 V vs. Ag/AgCl. A plot of peak current changes versus the logarithm of the lysozyme concentration is linear in the 50 fmol L-1 to 10 nmol L-1 concentration range, with a 12.9 fmol L-1 detection limit (at an S/N ratio of 3). The method is highly reproducible, specific and sensitive, and the electrode has a rapid response. It was applied to the determination of lysozyme in egg white, serum, and urine. Graphical abstract Schematic of a nanocomposite composed of multi-walled carbon nanotubes (MWCNTs), poly(diallyldimethyl ammonium chloride) (PDDA), and carbon quantum dots (CQDs) for use in a lysozyme aptasensor. The aptamer was immobilized on the surface, and bovine serum albumin (BSA) was applied to block the surface. The changes of peak current for the electrochemical probe hexacyanoferrate (Fe(CN)63-/4-) in the presence and absence of lysozyme was traced.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 38 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 38 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 21%
Student > Master 6 16%
Professor 3 8%
Researcher 2 5%
Student > Doctoral Student 1 3%
Other 2 5%
Unknown 16 42%
Readers by discipline Count As %
Chemistry 11 29%
Engineering 2 5%
Materials Science 2 5%
Agricultural and Biological Sciences 1 3%
Psychology 1 3%
Other 4 11%
Unknown 17 45%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 May 2018.
All research outputs
#20,485,225
of 23,047,237 outputs
Outputs from Microchimica Acta
#1,039
of 1,401 outputs
Outputs of similar age
#383,710
of 446,291 outputs
Outputs of similar age from Microchimica Acta
#26
of 44 outputs
Altmetric has tracked 23,047,237 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,401 research outputs from this source. They receive a mean Attention Score of 2.4. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 446,291 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 44 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.