↓ Skip to main content

Comprehensive In Vitro Toxicity Testing of a Panel of Representative Oxide Nanomaterials: First Steps towards an Intelligent Testing Strategy

Overview of attention for article published in PLOS ONE, May 2015
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (74th percentile)
  • Good Attention Score compared to outputs of the same age and source (73rd percentile)

Mentioned by

twitter
5 X users
peer_reviews
1 peer review site
facebook
1 Facebook page
f1000
1 research highlight platform

Citations

dimensions_citation
143 Dimensions

Readers on

mendeley
203 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Comprehensive In Vitro Toxicity Testing of a Panel of Representative Oxide Nanomaterials: First Steps towards an Intelligent Testing Strategy
Published in
PLOS ONE, May 2015
DOI 10.1371/journal.pone.0127174
Pubmed ID
Authors

Lucian Farcal, Fernando Torres Andón, Luisana Di Cristo, Bianca Maria Rotoli, Ovidio Bussolati, Enrico Bergamaschi, Agnieszka Mech, Nanna B. Hartmann, Kirsten Rasmussen, Juan Riego-Sintes, Jessica Ponti, Agnieszka Kinsner-Ovaskainen, François Rossi, Agnes Oomen, Peter Bos, Rui Chen, Ru Bai, Chunying Chen, Louise Rocks, Norma Fulton, Bryony Ross, Gary Hutchison, Lang Tran, Sarah Mues, Rainer Ossig, Jürgen Schnekenburger, Luisa Campagnolo, Lucia Vecchione, Antonio Pietroiusti, Bengt Fadeel

Abstract

Nanomaterials (NMs) display many unique and useful physico-chemical properties. However, reliable approaches are needed for risk assessment of NMs. The present study was performed in the FP7-MARINA project, with the objective to identify and evaluate in vitro test methods for toxicity assessment in order to facilitate the development of an intelligent testing strategy (ITS). Six representative oxide NMs provided by the EC-JRC Nanomaterials Repository were tested in nine laboratories. The in vitro toxicity of NMs was evaluated in 12 cellular models representing 6 different target organs/systems (immune system, respiratory system, gastrointestinal system, reproductive organs, kidney and embryonic tissues). The toxicity assessment was conducted using 10 different assays for cytotoxicity, embryotoxicity, epithelial integrity, cytokine secretion and oxidative stress. Thorough physico-chemical characterization was performed for all tested NMs. Commercially relevant NMs with different physico-chemical properties were selected: two TiO2 NMs with different surface chemistry - hydrophilic (NM-103) and hydrophobic (NM-104), two forms of ZnO - uncoated (NM-110) and coated with triethoxycapryl silane (NM-111) and two SiO2 NMs produced by two different manufacturing techniques - precipitated (NM-200) and pyrogenic (NM-203). Cell specific toxicity effects of all NMs were observed; macrophages were the most sensitive cell type after short-term exposures (24-72h) (ZnO>SiO2>TiO2). Longer term exposure (7 to 21 days) significantly affected the cell barrier integrity in the presence of ZnO, but not TiO2 and SiO2, while the embryonic stem cell test (EST) classified the TiO2 NMs as potentially 'weak-embryotoxic' and ZnO and SiO2 NMs as 'non-embryotoxic'. A hazard ranking could be established for the representative NMs tested (ZnO NM-110 > ZnO NM-111 > SiO2 NM-203 > SiO2 NM-200 > TiO2 NM-104 > TiO2 NM-103). This ranking was different in the case of embryonic tissues, for which TiO2 displayed higher toxicity compared with ZnO and SiO2. Importantly, the in vitro methodology applied could identify cell- and NM-specific responses, with a low variability observed between different test assays. Overall, this testing approach, based on a battery of cellular systems and test assays, complemented by an exhaustive physico-chemical characterization of NMs, could be deployed for the development of an ITS suitable for risk assessment of NMs. This study also provides a rich source of data for modeling of NM effects.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 203 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Spain 1 <1%
Sweden 1 <1%
Bulgaria 1 <1%
Norway 1 <1%
Unknown 199 98%

Demographic breakdown

Readers by professional status Count As %
Researcher 41 20%
Student > Ph. D. Student 38 19%
Student > Master 29 14%
Student > Bachelor 19 9%
Student > Doctoral Student 13 6%
Other 27 13%
Unknown 36 18%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 31 15%
Agricultural and Biological Sciences 22 11%
Pharmacology, Toxicology and Pharmaceutical Science 22 11%
Environmental Science 15 7%
Medicine and Dentistry 12 6%
Other 46 23%
Unknown 55 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 6. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 March 2018.
All research outputs
#5,649,684
of 22,807,037 outputs
Outputs from PLOS ONE
#68,850
of 194,660 outputs
Outputs of similar age
#66,260
of 266,745 outputs
Outputs of similar age from PLOS ONE
#1,807
of 6,816 outputs
Altmetric has tracked 22,807,037 research outputs across all sources so far. Compared to these this one has done well and is in the 75th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 194,660 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 15.1. This one has gotten more attention than average, scoring higher than 64% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 266,745 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 74% of its contemporaries.
We're also able to compare this research output to 6,816 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 73% of its contemporaries.