↓ Skip to main content

Genome-wide association study identifies loci influencing concentrations of liver enzymes in plasma

Overview of attention for article published in Nature Genetics, October 2011
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (92nd percentile)
  • Good Attention Score compared to outputs of the same age and source (78th percentile)

Mentioned by

twitter
7 X users
patent
9 patents
facebook
1 Facebook page
wikipedia
2 Wikipedia pages
f1000
1 research highlight platform

Citations

dimensions_citation
494 Dimensions

Readers on

mendeley
502 Mendeley
citeulike
2 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Genome-wide association study identifies loci influencing concentrations of liver enzymes in plasma
Published in
Nature Genetics, October 2011
DOI 10.1038/ng.970
Pubmed ID
Authors

John C Chambers, Weihua Zhang, Joban Sehmi, Xinzhong Li, Mark N Wass, Pim Van der Harst, Hilma Holm, Serena Sanna, Maryam Kavousi, Sebastian E Baumeister, Lachlan J Coin, Guohong Deng, Christian Gieger, Nancy L Heard-Costa, Jouke-Jan Hottenga, Brigitte Kühnel, Vinod Kumar, Vasiliki Lagou, Liming Liang, Jian'an Luan, Pedro Marques Vidal, Irene Mateo Leach, Paul F O'Reilly, John F Peden, Nilufer Rahmioglu, Pasi Soininen, Elizabeth K Speliotes, Xin Yuan, Gudmar Thorleifsson, Behrooz Z Alizadeh, Larry D Atwood, Ingrid B Borecki, Morris J Brown, Pimphen Charoen, Francesco Cucca, Debashish Das, Eco J C de Geus, Anna L Dixon, Angela Döring, Georg Ehret, Gudmundur I Eyjolfsson, Martin Farrall, Nita G Forouhi, Nele Friedrich, Wolfram Goessling, Daniel F Gudbjartsson, Tamara B Harris, Anna-Liisa Hartikainen, Simon Heath, Gideon M Hirschfield, Albert Hofman, Georg Homuth, Elina Hyppönen, Harry L A Janssen, Toby Johnson, Antti J Kangas, Ido P Kema, Jens P Kühn, Sandra Lai, Mark Lathrop, Markus M Lerch, Yun Li, T Jake Liang, Jing-Ping Lin, Ruth J F Loos, Nicholas G Martin, Miriam F Moffatt, Grant W Montgomery, Patricia B Munroe, Kiran Musunuru, Yusuke Nakamura, Christopher J O'Donnell, Isleifur Olafsson, Brenda W Penninx, Anneli Pouta, Bram P Prins, Inga Prokopenko, Ralf Puls, Aimo Ruokonen, Markku J Savolainen, David Schlessinger, Jeoffrey N L Schouten, Udo Seedorf, Srijita Sen-Chowdhry, Katherine A Siminovitch, Johannes H Smit, Timothy D Spector, Wenting Tan, Tanya M Teslovich, Taru Tukiainen, Andre G Uitterlinden, Melanie M Van der Klauw, Ramachandran S Vasan, Chris Wallace, Henri Wallaschofski, H-Erich Wichmann, Gonneke Willemsen, Peter Würtz, Chun Xu, Laura M Yerges-Armstrong, Goncalo R Abecasis, Kourosh R Ahmadi, Dorret I Boomsma, Mark Caulfield, William O Cookson, Cornelia M van Duijn, Philippe Froguel, Koichi Matsuda, Mark I McCarthy, Christa Meisinger, Vincent Mooser, Kirsi H Pietiläinen, Gunter Schumann, Harold Snieder, Michael J E Sternberg, Ronald P Stolk, Howard C Thomas, Unnur Thorsteinsdottir, Manuela Uda, Gérard Waeber, Nicholas J Wareham, Dawn M Waterworth, Hugh Watkins, John B Whitfield, Jacqueline C M Witteman, Bruce H R Wolffenbuttel, Caroline S Fox, Mika Ala-Korpela, Kari Stefansson, Peter Vollenweider, Henry Völzke, Eric E Schadt, James Scott, Marjo-Riitta Järvelin, Paul Elliott, Jaspal S Kooner

Abstract

Concentrations of liver enzymes in plasma are widely used as indicators of liver disease. We carried out a genome-wide association study in 61,089 individuals, identifying 42 loci associated with concentrations of liver enzymes in plasma, of which 32 are new associations (P = 10(-8) to P = 10(-190)). We used functional genomic approaches including metabonomic profiling and gene expression analyses to identify probable candidate genes at these regions. We identified 69 candidate genes, including genes involved in biliary transport (ATP8B1 and ABCB11), glucose, carbohydrate and lipid metabolism (FADS1, FADS2, GCKR, JMJD1C, HNF1A, MLXIPL, PNPLA3, PPP1R3B, SLC2A2 and TRIB1), glycoprotein biosynthesis and cell surface glycobiology (ABO, ASGR1, FUT2, GPLD1 and ST3GAL4), inflammation and immunity (CD276, CDH6, GCKR, HNF1A, HPR, ITGA1, RORA and STAT4) and glutathione metabolism (GSTT1, GSTT2 and GGT), as well as several genes of uncertain or unknown function (including ABHD12, EFHD1, EFNA1, EPHA2, MICAL3 and ZNF827). Our results provide new insight into genetic mechanisms and pathways influencing markers of liver function.

X Demographics

X Demographics

The data shown below were collected from the profiles of 7 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 502 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Germany 3 <1%
United States 3 <1%
United Kingdom 3 <1%
France 2 <1%
Australia 1 <1%
Tanzania, United Republic of 1 <1%
New Zealand 1 <1%
Canada 1 <1%
Spain 1 <1%
Other 1 <1%
Unknown 485 97%

Demographic breakdown

Readers by professional status Count As %
Researcher 132 26%
Student > Ph. D. Student 75 15%
Professor 48 10%
Student > Master 33 7%
Professor > Associate Professor 29 6%
Other 118 24%
Unknown 67 13%
Readers by discipline Count As %
Agricultural and Biological Sciences 120 24%
Medicine and Dentistry 118 24%
Biochemistry, Genetics and Molecular Biology 99 20%
Computer Science 11 2%
Psychology 10 2%
Other 54 11%
Unknown 90 18%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 17. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 December 2023.
All research outputs
#2,131,965
of 25,837,817 outputs
Outputs from Nature Genetics
#2,789
of 7,639 outputs
Outputs of similar age
#10,392
of 151,608 outputs
Outputs of similar age from Nature Genetics
#17
of 79 outputs
Altmetric has tracked 25,837,817 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 91st percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 7,639 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 43.7. This one has gotten more attention than average, scoring higher than 63% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 151,608 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 92% of its contemporaries.
We're also able to compare this research output to 79 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 78% of its contemporaries.