↓ Skip to main content

Fluorouracil-Loaded Gold Nanoparticles for the Treatment of Skin Cancer: Development, in Vitro Characterization, and in Vivo Evaluation in a Mouse Skin Cancer Xenograft Model

Overview of attention for article published in Molecular Pharmaceutics, April 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (59th percentile)

Mentioned by

twitter
3 X users

Citations

dimensions_citation
89 Dimensions

Readers on

mendeley
141 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Fluorouracil-Loaded Gold Nanoparticles for the Treatment of Skin Cancer: Development, in Vitro Characterization, and in Vivo Evaluation in a Mouse Skin Cancer Xenograft Model
Published in
Molecular Pharmaceutics, April 2018
DOI 10.1021/acs.molpharmaceut.8b00047
Pubmed ID
Authors

Mohamed A. Safwat, Ghareb M. Soliman, Douaa Sayed, Mohamed A. Attia

Abstract

Fluorouracil (5-FU) is an antimetabolite drug used in the treatment of various malignancies, such as colon and skin cancers. However, its systemic administration results in severe side effects. Topical 5-FU delivery for the treatment of skin cancer could circumvent these shortcomings but it is limited by the drug poor permeability through the skin. To enhance 5-FU efficacy against skin cancer and reduce its systemic side effects it is was loaded into a gold nanoparticles (GNPs)-based topical delivery system. 5-FU was loaded onto GNPs capped with CTAB through ionic interactions between 5-FU and CTAB. GNPs were prepared at different 5-FU/CTAB molar ratios and evaluated using different techniques. GNPs stability and drug release were studied as a function of salt concentration and solution pH. Optimum 5-FU/CTAB-GNPs were incorporated into gel and cream bases and their ex vivo permeability was evaluated in mice dorsal skin. The in vivo anticancer efficacy of the same preparations was evaluated in A431 tumor-bearing mice. The GNPs had spherical shape and a size of ~16-150 nm. Maximum 5-FU entrapment was achieved at 5-FU/CTAB molar ratio of 1:1 and pH 11.5. Drug release from GNPs was sustained and pH-dependent. 5-FU GNPs gel and cream had around 2-fold higher permeability through mice skin compared with free 5-FU gel and cream formulations. Further, in vivo studies in a mouse model having A431 skin cancer cells implanted in the subcutaneous space showed that the GNPs gel and cream achieved 6.8- and 18.4-fold lower tumor volume compared with the untreated control, respectively. These results confirm the potential of topical 5-FU/CTAB-GNPs to enhance drug efficacy against skin cancer.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 141 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 141 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 23 16%
Student > Master 22 16%
Researcher 17 12%
Student > Bachelor 10 7%
Professor > Associate Professor 8 6%
Other 11 8%
Unknown 50 35%
Readers by discipline Count As %
Pharmacology, Toxicology and Pharmaceutical Science 25 18%
Chemistry 12 9%
Biochemistry, Genetics and Molecular Biology 11 8%
Medicine and Dentistry 8 6%
Engineering 7 5%
Other 20 14%
Unknown 58 41%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 22 August 2018.
All research outputs
#13,241,759
of 23,047,237 outputs
Outputs from Molecular Pharmaceutics
#1,761
of 4,159 outputs
Outputs of similar age
#161,554
of 326,463 outputs
Outputs of similar age from Molecular Pharmaceutics
#40
of 104 outputs
Altmetric has tracked 23,047,237 research outputs across all sources so far. This one is in the 42nd percentile – i.e., 42% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,159 research outputs from this source. They receive a mean Attention Score of 4.5. This one has gotten more attention than average, scoring higher than 56% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 326,463 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 49th percentile – i.e., 49% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 104 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 59% of its contemporaries.