↓ Skip to main content

Quantitative architectural analysis: a new approach to cortical mapping

Overview of attention for article published in Brain Structure and Function, October 2005
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (96th percentile)
  • High Attention Score compared to outputs of the same age and source (87th percentile)

Mentioned by

blogs
3 blogs
twitter
1 X user

Citations

dimensions_citation
143 Dimensions

Readers on

mendeley
92 Mendeley
Title
Quantitative architectural analysis: a new approach to cortical mapping
Published in
Brain Structure and Function, October 2005
DOI 10.1007/s00429-005-0028-2
Pubmed ID
Authors

A. Schleicher, N. Palomero-Gallagher, P. Morosan, S. B. Eickhoff, T. Kowalski, K. de Vos, K. Amunts, K. Zilles

Abstract

Recent progress in anatomical and functional MRI has revived the demand for a reliable, topographic map of the human cerebral cortex. Till date, interpretations of specific activations found in functional imaging studies and their topographical analysis in a spatial reference system are, often, still based on classical architectonic maps. The most commonly used reference atlas is that of Brodmann and his successors, despite its severe inherent drawbacks. One obvious weakness in traditional, architectural mapping is the subjective nature of localising borders between cortical areas, by means of a purely visual, microscopical examination of histological specimens. To overcome this limitation, more objective, quantitative mapping procedures have been established in the past years. The quantification of the neocortical, laminar pattern by defining intensity line profiles across the cortical layers, has a long tradition. During the last years, this method has been extended to enable a reliable, reproducible mapping of the cortex based on image analysis and multivariate statistics. Methodological approaches to such algorithm-based, cortical mapping were published for various architectural modalities. In our contribution, principles of algorithm-based mapping are described for cyto- and receptorarchitecture. In a cytoarchitectural parcellation of the human auditory cortex, using a sliding window procedure, the classical areal pattern of the human superior temporal gyrus was modified by a replacing of Brodmann's areas 41, 42, 22 and parts of area 21, with a novel, more detailed map. An extension and optimisation of the sliding window procedure to the specific requirements of receptorarchitectonic mapping, is also described using the macaque central sulcus and adjacent superior parietal lobule as a second, biologically independent example. Algorithm-based mapping procedures, however, are not limited to these two architectural modalities, but can be applied to all images in which a laminar cortical pattern can be detected and quantified, e.g. myeloarchitectonic and in vivo high resolution MR imaging. Defining cortical borders, based on changes in cortical lamination in high resolution, in vivo structural MR images will result in a rapid increase of our knowledge on the structural parcellation of the human cerebral cortex.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 92 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 4 4%
United Kingdom 2 2%
Canada 2 2%
Netherlands 1 1%
Germany 1 1%
Unknown 82 89%

Demographic breakdown

Readers by professional status Count As %
Researcher 30 33%
Student > Ph. D. Student 17 18%
Professor 11 12%
Professor > Associate Professor 8 9%
Student > Bachelor 5 5%
Other 14 15%
Unknown 7 8%
Readers by discipline Count As %
Neuroscience 24 26%
Agricultural and Biological Sciences 17 18%
Medicine and Dentistry 16 17%
Psychology 6 7%
Engineering 5 5%
Other 8 9%
Unknown 16 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 21. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 22 March 2023.
All research outputs
#1,802,780
of 25,373,627 outputs
Outputs from Brain Structure and Function
#109
of 2,021 outputs
Outputs of similar age
#2,893
of 74,900 outputs
Outputs of similar age from Brain Structure and Function
#1
of 8 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 92nd percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 2,021 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.8. This one has done particularly well, scoring higher than 94% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 74,900 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 96% of its contemporaries.
We're also able to compare this research output to 8 others from the same source and published within six weeks on either side of this one. This one has scored higher than all of them