↓ Skip to main content

Analysis of a Prey–Predator Model with Non-local Interaction in the Prey Population

Overview of attention for article published in Bulletin of Mathematical Biology, March 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (56th percentile)

Mentioned by

twitter
4 X users

Citations

dimensions_citation
27 Dimensions

Readers on

mendeley
12 Mendeley
Title
Analysis of a Prey–Predator Model with Non-local Interaction in the Prey Population
Published in
Bulletin of Mathematical Biology, March 2018
DOI 10.1007/s11538-018-0410-x
Pubmed ID
Authors

S. Pal, S. Ghorai, M. Banerjee

Abstract

Non-local reaction-diffusion equation is an important area to study the dynamics of the individuals which compete for resources. In this paper, we describe a prey-dependent predator-prey model with Holling type II functional response with a generalist predator. In particular, we want to see the behavior of the system in the presence of non-local interaction. Introduction of non-local intraspecific competition in prey population leads to some new characteristics in comparison with the local model. Comparisons have been made between the local and non-local interactions of the system. The range of non-local interaction enlarges the parametric domain on which stationary patterns exist. The periodic oscillation for the local model in the Hopf domain can be stabilized by suitable limit of strong non-local interaction. An increase in the range of non-local interaction increases the Turing domain up to a certain level, and then, it decreases. Also, increasing the range of non-local interaction results in the overlap of nearby foraging areas and hence alters the size of the localized patches and formation of multiple stationary patches. Numerical simulations have been carried out to validate the analytical findings and to establish the existence of multiple stationary patterns, oscillatory solution, two-periodic solution and other spatiotemporal dynamics.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 12 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 12 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 3 25%
Student > Bachelor 1 8%
Student > Doctoral Student 1 8%
Professor 1 8%
Professor > Associate Professor 1 8%
Other 0 0%
Unknown 5 42%
Readers by discipline Count As %
Mathematics 6 50%
Social Sciences 1 8%
Unknown 5 42%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 May 2018.
All research outputs
#13,241,759
of 23,047,237 outputs
Outputs from Bulletin of Mathematical Biology
#509
of 1,104 outputs
Outputs of similar age
#165,085
of 332,343 outputs
Outputs of similar age from Bulletin of Mathematical Biology
#13
of 30 outputs
Altmetric has tracked 23,047,237 research outputs across all sources so far. This one is in the 42nd percentile – i.e., 42% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,104 research outputs from this source. They receive a mean Attention Score of 4.7. This one has gotten more attention than average, scoring higher than 52% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 332,343 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 49th percentile – i.e., 49% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 30 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 56% of its contemporaries.