↓ Skip to main content

High-frequency oscillatory ventilation guided by transpulmonary pressure in acute respiratory syndrome: an experimental study in pigs

Overview of attention for article published in Critical Care, May 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (81st percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
20 X users
facebook
1 Facebook page

Citations

dimensions_citation
7 Dimensions

Readers on

mendeley
26 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
High-frequency oscillatory ventilation guided by transpulmonary pressure in acute respiratory syndrome: an experimental study in pigs
Published in
Critical Care, May 2018
DOI 10.1186/s13054-018-2028-7
Pubmed ID
Authors

Philipp Klapsing, Onnen Moerer, Christoph Wende, Peter Herrmann, Michael Quintel, Annalen Bleckmann, Jan Florian Heuer

Abstract

Recent clinical studies have not shown an overall benefit of high-frequency oscillatory ventilation (HFOV), possibly due to injurious or non-individualized HFOV settings. We compared conventional HFOV (HFOVcon) settings with HFOV settings based on mean transpulmonary pressures (PLmean) in an animal model of experimental acute respiratory distress syndrome (ARDS). ARDS was induced in eight pigs by intrabronchial installation of hydrochloric acid (0.1 N, pH 1.1; 2.5 ml/kg body weight). The animals were initially ventilated in volume-controlled mode with low tidal volumes (6 ml kg- 1) at three positive end-expiratory pressure (PEEP) levels (5, 10, 20 cmH2O) followed by HFOVcon and then HFOV PLmean each at PEEP 10 and 20. The continuous distending pressure (CDP) during HFOVcon was set at mean airway pressure plus 5 cmH2O. For HFOV PLmean it was set at mean PL plus 5 cmH2O. Baseline measurements were obtained before and after induction of ARDS under volume controlled ventilation with PEEP 5. The same measurements and computer tomography of the thorax were then performed under all ventilatory regimens at PEEP 10 and 20. Cardiac output, stroke volume, mean arterial pressure and intrathoracic blood volume index were significantly higher during HFOV PLmean than during HFOVcon at PEEP 20. Lung density, total lung volume, and normally and poorly aerated lung areas were significantly greater during HFOVcon, while there was less over-aerated lung tissue in HFOV PLmean. The groups did not differ in oxygenation or extravascular lung water index. HFOV PLmean is associated with less hemodynamic compromise and less pulmonary overdistension than HFOVcon. Despite the increase in non-ventilated lung areas, oxygenation improved with both regimens. An individualized approach with HFOV settings based on transpulmonary pressure could be a useful ventilatory strategy in patients with ARDS. Providing alveolar stabilization with HFOV while avoiding harmful distending pressures and pulmonary overdistension might be a key in the context of ventilator-induced lung injury.

X Demographics

X Demographics

The data shown below were collected from the profiles of 20 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 26 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 26 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 15%
Researcher 3 12%
Student > Postgraduate 3 12%
Student > Bachelor 2 8%
Professor 2 8%
Other 6 23%
Unknown 6 23%
Readers by discipline Count As %
Medicine and Dentistry 13 50%
Nursing and Health Professions 3 12%
Pharmacology, Toxicology and Pharmaceutical Science 1 4%
Neuroscience 1 4%
Engineering 1 4%
Other 0 0%
Unknown 7 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 11. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 May 2018.
All research outputs
#3,217,831
of 25,382,440 outputs
Outputs from Critical Care
#2,626
of 6,555 outputs
Outputs of similar age
#62,636
of 341,024 outputs
Outputs of similar age from Critical Care
#57
of 85 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. Compared to these this one has done well and is in the 87th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 6,555 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 20.8. This one has gotten more attention than average, scoring higher than 59% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 341,024 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 81% of its contemporaries.
We're also able to compare this research output to 85 others from the same source and published within six weeks on either side of this one. This one is in the 32nd percentile – i.e., 32% of its contemporaries scored the same or lower than it.