↓ Skip to main content

Sirtuin signaling controls mitochondrial function in glycogen storage disease type Ia

Overview of attention for article published in Journal of Inherited Metabolic Disease, May 2018
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
22 Dimensions

Readers on

mendeley
25 Mendeley
Title
Sirtuin signaling controls mitochondrial function in glycogen storage disease type Ia
Published in
Journal of Inherited Metabolic Disease, May 2018
DOI 10.1007/s10545-018-0192-1
Pubmed ID
Authors

Jun‐Ho Cho, Goo‐Young Kim, Brian C. Mansfield, Janice Y. Chou

Abstract

Glycogen storage disease type Ia (GSD-Ia) deficient in glucose-6-phosphatase-α (G6Pase-α) is a metabolic disorder characterized by impaired glucose homeostasis and a long-term complication of hepatocellular adenoma/carcinoma (HCA/HCC). Mitochondrial dysfunction has been implicated in GSD-Ia but the underlying mechanism and its contribution to HCA/HCC development remain unclear. We have shown that hepatic G6Pase-α deficiency leads to downregulation of sirtuin 1 (SIRT1) signaling that underlies defective hepatic autophagy in GSD-Ia. SIRT1 is a NAD+-dependent deacetylase that can deacetylate and activate peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), a master regulator of mitochondrial integrity, biogenesis, and function. We hypothesized that downregulation of hepatic SIRT1 signaling in G6Pase-α-deficient livers impairs PGC-1α activity, leading to mitochondrial dysfunction. Here we show that the G6Pase-α-deficient livers display defective PGC-1α signaling, reduced numbers of functional mitochondria, and impaired oxidative phosphorylation. Overexpression of hepatic SIRT1 restores PGC-1α activity, normalizes the expression of electron transport chain components, and increases mitochondrial complex IV activity. We have previously shown that restoration of hepatic G6Pase-α expression normalized SIRT1 signaling. We now show that restoration of hepatic G6Pase-α expression also restores PGC-1α activity and mitochondrial function. Finally, we show that HCA/HCC lesions found in G6Pase-α-deficient livers contain marked mitochondrial and oxidative DNA damage. Taken together, our study shows that downregulation of hepatic SIRT1/PGC-1α signaling underlies mitochondrial dysfunction and that oxidative DNA damage incurred by damaged mitochondria may contribute to HCA/HCC development in GSD-Ia.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 25 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 25 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 5 20%
Researcher 4 16%
Student > Ph. D. Student 4 16%
Student > Doctoral Student 2 8%
Other 1 4%
Other 4 16%
Unknown 5 20%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 10 40%
Agricultural and Biological Sciences 3 12%
Immunology and Microbiology 2 8%
Unspecified 1 4%
Medicine and Dentistry 1 4%
Other 0 0%
Unknown 8 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 May 2018.
All research outputs
#19,869,877
of 24,417,958 outputs
Outputs from Journal of Inherited Metabolic Disease
#1,750
of 1,953 outputs
Outputs of similar age
#258,932
of 332,009 outputs
Outputs of similar age from Journal of Inherited Metabolic Disease
#28
of 38 outputs
Altmetric has tracked 24,417,958 research outputs across all sources so far. This one is in the 10th percentile – i.e., 10% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,953 research outputs from this source. They receive a mean Attention Score of 4.8. This one is in the 4th percentile – i.e., 4% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 332,009 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 11th percentile – i.e., 11% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 38 others from the same source and published within six weeks on either side of this one. This one is in the 10th percentile – i.e., 10% of its contemporaries scored the same or lower than it.