↓ Skip to main content

Laser interferometry of the hydrolytic changes in protein solutions: the refractive index and hydration shells

Overview of attention for article published in Journal of Biological Physics, May 2018
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
10 Dimensions

Readers on

mendeley
5 Mendeley
Title
Laser interferometry of the hydrolytic changes in protein solutions: the refractive index and hydration shells
Published in
Journal of Biological Physics, May 2018
DOI 10.1007/s10867-018-9494-7
Pubmed ID
Authors

R. M. Sarimov, T. A. Matveyeva, V. N. Binhi

Abstract

Using an original laser interferometer of enhanced sensitivity, an increase in the refractive index of a protein solution was observed during the reaction of proteolysis catalyzed by pepsin. The increase in the refractive index of the protein solution at a concentration of 4 mg/ml was [Formula: see text] for bovine serum albumin and [Formula: see text] for lysozyme. The observed effect disproves the existing idea that the refractive index of protein solutions is determined only by their amino acid composition and concentration. It is shown that the refractive index also depends on the state of protein fragmentation. A mathematical model of proteolysis and a real-time method for estimating the state of protein hydration based on the measurement of refractive index during the reaction are proposed. A good agreement between the experimental and calculated time dependences of the refractive index shows that the growth of the surface of protein fragments and the change in the number of hydration cavities during proteolysis can be responsible for the observed effect.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 5 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 5 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 2 40%
Student > Master 1 20%
Unknown 2 40%
Readers by discipline Count As %
Physics and Astronomy 2 40%
Chemical Engineering 1 20%
Unknown 2 40%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 May 2018.
All research outputs
#17,948,821
of 23,047,237 outputs
Outputs from Journal of Biological Physics
#179
of 298 outputs
Outputs of similar age
#236,023
of 325,572 outputs
Outputs of similar age from Journal of Biological Physics
#8
of 17 outputs
Altmetric has tracked 23,047,237 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 298 research outputs from this source. They receive a mean Attention Score of 2.6. This one is in the 33rd percentile – i.e., 33% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 325,572 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 22nd percentile – i.e., 22% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 17 others from the same source and published within six weeks on either side of this one. This one is in the 17th percentile – i.e., 17% of its contemporaries scored the same or lower than it.