↓ Skip to main content

Heterogeneous vascular permeability and alternative diffusion barrier in sensory circumventricular organs of adult mouse brain

Overview of attention for article published in Cell and Tissue Research, June 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (51st percentile)

Mentioned by

twitter
1 X user

Citations

dimensions_citation
57 Dimensions

Readers on

mendeley
60 Mendeley
Title
Heterogeneous vascular permeability and alternative diffusion barrier in sensory circumventricular organs of adult mouse brain
Published in
Cell and Tissue Research, June 2015
DOI 10.1007/s00441-015-2207-7
Pubmed ID
Authors

Shoko Morita, Eriko Furube, Tetsuya Mannari, Hiroaki Okuda, Kouko Tatsumi, Akio Wanaka, Seiji Miyata

Abstract

Fenestrated capillaries of the sensory circumventricular organs (CVOs), including the organum vasculosum of the lamina terminalis, the subfornical organ and the area postrema, lack completeness of the blood-brain barrier (BBB) to sense a variety of blood-derived molecules and to convey the information into other brain regions. We examine the vascular permeability of blood-derived molecules and the expression of tight-junction proteins in sensory CVOs. The present tracer assays revealed that blood-derived dextran 10 k (Dex10k) having a molecular weight (MW) of 10,000 remained in the perivascular space between the inner and outer basement membranes, but fluorescein isothiocyanate (FITC; MW: 389) and Dex3k (MW: 3000) diffused into the parenchyma. The vascular permeability of FITC was higher at central subdivisions than at distal subdivisions. Neither FITC nor Dex3k diffused beyond the dense network of glial fibrillar acidic protein (GFAP)-positive astrocytes/tanycytes. The expression of tight-junction proteins such as occludin, claudin-5 and zonula occludens-1 (ZO-1) was undetectable at the central subdivisions of the sensory CVOs but some was expressed at the distal subdivisions. Electron microscopic observation showed that capillaries were surrounded with numerous layers of astrocyte processes and dendrites. The expression of occludin and ZO-1 was also observed as puncta on GFAP-positive astrocytes/tanycytes of the sensory CVOs. Our study thus demonstrates the heterogeneity of vascular permeability and expression of tight-junction proteins and indicates that the outer basement membrane and dense astrocyte/tanycyte connection are possible alternative mechanisms for a diffusion barrier of blood-derived molecules, instead of the BBB.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 60 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 60 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 12 20%
Researcher 11 18%
Student > Bachelor 7 12%
Student > Master 5 8%
Professor 3 5%
Other 10 17%
Unknown 12 20%
Readers by discipline Count As %
Neuroscience 12 20%
Agricultural and Biological Sciences 10 17%
Biochemistry, Genetics and Molecular Biology 10 17%
Medicine and Dentistry 7 12%
Immunology and Microbiology 2 3%
Other 4 7%
Unknown 15 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 June 2015.
All research outputs
#16,061,913
of 23,839,820 outputs
Outputs from Cell and Tissue Research
#1,468
of 2,279 outputs
Outputs of similar age
#159,285
of 268,562 outputs
Outputs of similar age from Cell and Tissue Research
#10
of 27 outputs
Altmetric has tracked 23,839,820 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,279 research outputs from this source. They receive a mean Attention Score of 3.3. This one is in the 27th percentile – i.e., 27% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 268,562 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 32nd percentile – i.e., 32% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 27 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 51% of its contemporaries.